
Souvik Ghosh

C++ OOP

Pointers
Pointers Introduction
Understanding Address
Pointer is a powerful feature of C++ programming that allows us to work with memory
addresses.

But before we learn about pointers, let's first learn about addresses.

Suppose we have created a variable like this:

int var;

Now, a space will be allocated in the computer memory for the var variable, and we can
access the memory address using &var.

Let's see an example.

#include <iostream>
using namespace std;
int main() {
int var = 13;
// print the value stored in the variable
cout << "Value of var: " << var << endl;
// print the memory address of the variable
cout << "Address of var: " << &var;
return 0;
}

Output

Value of var: 13
Address of var: 0x7ffc5ff6f594

Here, you can see that printing &var gives 0x7ffc5ff6f594, which is the memory location
where 13 is stored.

Note: You may get a different address when you run this code because the output
depends on the location where the variable will be stored (which varies from device to
device).

Pointer Variables
Now that you know about memory addresses, let's see what role pointers play in all of this.

A pointer is a special symbol that stores the address of a variable rather than a value.

Let's first see how we can create pointers.

Create a Pointer

int* pt;

Here, pt is the pointer variable. Let's compare it with a regular variable:

int var;

As you can see, we have used int* instead of int to represent the pointer variable. Note that
the * here doesn't mean multiplication; it is a part of the syntax used for pointer declaration.

Note: We can also use the code int *pt; to create a pointer variable. However, we recommend
you use the int* pt; format instead.

Assign Address to a Pointer
When we first declare a pointer, the system assigns a random empty address to it.

We can then change the random address by assigning the address of a variable to a pointer. For
example,

#include <iostream>
using namespace std;
int main() {
// create a variable
int number = 36;
// create a pointer variable
// a random address is assigned to pt
int* pt;
// assign address of number variable to pointer
pt = &number;
// print the address stored in pt pointer
cout << "Value of pt: " << pt << endl;
// print the address of the number variable
cout << "Address of number: " << &number;
return 0;
}

Output

Value of pt: 0x7fff50757bec
Address of number: 0x7fff50757bec

Here, you can see the value of pt (pointer variable) and &number (address of number) is the same.

This is because we have assigned the address of number to the pt variable.

pt = &number;

Here's how this program works:

1. pt is a pointer variable, and number is a regular variable with a value of 36.

2. The code pt = &number; assigns the address of the number variable to pt.

Figure: Assign Address to Pointer

3. Finally, since both pt and &number point to the address of the number variable, we get the same
output when we print them.

Get Value Pointed by Pointers
In C++, we can also use pointers to print the value stored in another variable. Let's take an
example,

int number = 36;
// pt stores the address of number
int* pt = &number;

Here, the pointer stores the memory address of the variable number. Now, we can also access the
value of the number variable by using the code *pt.

Let's see how.

#include <iostream>
using namespace std;
int main() {
// create a variable
int number = 36;
// create a pointer variable to store address of number
int* pt = &number;
// print the memory address
cout << "Address: " << pt << endl;
// print the value of number using pt
cout << "Value: " << *pt;

return 0;
}

Output

Address: 0x7ffee16b0c3c
Value: 36

In this program, we have used two cout statements:

1. To Print the Memory Address

cout << "Address: " << pt << endl;

Here, we have used pt to indicate the pointer variable.

2. To Print the Value

cout << "Value: " << *pt;

Here, we have used *pt to indicate the value stored in the variable whose address is stored in pt.

This process is called dereferencing a pointer in C++. In other words, whenever we use *pt to
access the variable value, we are dereferencing the pt pointer.

Important! Remember the Difference Between pt and *pt!

 pt is the pointer variable which gives the memory address.
 *pt gives the value of the variable whose address is stored in pt.

Common Pointer Mistakes
Many people create pointers like this:

int *pt;

This is also a valid way to declare a pointer. However, this syntax sometimes creates lots of
confusion among beginners.

In this syntax, the * symbol is attached to pt, so many people think that *pt is the pointer variable,
which is wrong.

In fact, pt is the pointer variable which stores the memory address and * is just a part of syntax to
create pointers.

And *pt denotes the data stored in the address that is pointed by pt.

DON'T GET CONFUSED.

Tip: To avoid this confusion, we recommend you use int* pt.

Common Mistakes While Working With Pointers

Suppose, we want a pointer pt to hold the address of number. Then,

int number;
int* pt;

// pt is address but number is not
pt = number; // Error

// &number is address but *pt is not
*pt = &number; // Error

// both &number and pt are addresses
pt = &number; // Valid

// both number and *pt are values
*pt = number; // Valid

Pointers & Arrays

Memory Address and Array
In C++, we can use pointers to work with arrays. But before that, let's revise the working of an
array.

An array is a collection of multiple data of the same type. For example,

#include <iostream>
using namespace std;
int main() {
// array of numbers
int numbers[5] = {1, 2, 3, 4, 5};
// print array
cout << "Array Elements: ";
for (int i = 0; i < 5; ++i) {
cout << numbers[i] << ", ";
}
return 0;
}
// Output:
// Array Elements: 1, 2, 3, 4, 5,

Here, we have created an array of numbers. We then used a for loop to print the array elements.

Now, let's try to print addresses of array elements.

#include <iostream>
using namespace std;
int main() {
// array of numbers
int numbers[5] = {1, 2, 3, 4, 5};
// print the addresses of array elements
for (int i = 0; i < 5; ++i) {
cout << &numbers[i] << endl;

}
cout << "Address of the array: " << numbers;
return 0;
}

Output

0x7ffd9ab98350

0x7ffd9ab98354

0x7ffd9ab98358

0x7ffd9ab9835c

0x7ffd9ab98360
Address of the array: 0x7ffd9ab98350

Things to notice

1. The difference between the addresses of two array elements is 4.

// the last two digits of this address is 50
0x7ffd9ab98350
// the last two digits of the next address is 54
0x7ffd9ab98354

This is because our array is of type int and the size of int is 4 bytes.

Hence, each array element is taking 4 bytes of memory storage.

2. The address of the first array element, 1, and the address of the array, numbers, is the same.

This is because the array address always points to the first element of the array.

Figure: Array Address

Note: We have used numbers instead of &numbers while printing the address of the array. This is
because in most contexts, array names decay (get converted) to pointers and we can use pointers
to access elements of the array, which we will see next.

Arrays and Pointers
In our last example, we saw that the array name can also decay to a pointer.

Thus, if we have an array numbers[], then the array name numbers can be used as a pointer that
points to the first element of the array.

For example,

#include <iostream>
using namespace std;
int main() {
// array of numbers
int numbers[5] = {1, 2, 3, 4, 5};
// address of first array element
cout << &numbers[0] << endl; // 0x7ffef078f350
// address of first array element
cout << numbers << endl; // 0x7ffef078f350
return 0;
}

Remember, numbers represents the pointer here.

Now, we can use this pointer to access elements of the array.

Here,

1. &numbers[0] is equivalent to numbers. Hence, the first element 1 can be accessed using *numbers.

Figure: Array and Pointer

2. &numbers[1] is equivalent to numbers + 1 and the second element 2 can be accessed
using *(numbers + 1).

3. &numbers[2] is equivalent to numbers + 2 and the third element 3 can be accessed using *(numbers
+ 2).

And, so on...

Figure: Array and Pointers

Basically,

 &numbers[i] is equivalent to numbers + i
 numbers[i] is equivalent to *(numbers + i)

Now, let's implement this in a working example.

Example: Arrays and Pointers
Here's an example to demonstrate the relationship between pointers and arrays.

#include <iostream>
using namespace std;
int main() {
// array of numbers
int numbers[5] = {1, 2, 3};
// print second element using pointer
cout << "Second Élément: " << *(numbers + 1) << endl;
// print last element using pointer
cout << "Last Element: " << *(numbers + 2);
return 0;
}

Output

Second Element: 2
Last Element: 3

As you can see, we have successfully accessed the second and last elements using
pointer notation: *(numbers + 1) and *(numbers + 2) respectively.

We can also change array elements using pointer notation. Let's see an example,

#include <iostream>
using namespace std;
int main() {
// array of numbers

int numbers[3] = {1, 2, 3};
// change second element to 5
*(numbers + 1) = 5;
// change last element to 10
*(numbers + 2) = 10;
// print second element using pointer notation
cout << "Second Element: " << *(numbers + 1) << endl;
// print last element using pointer notation
cout << "Last Element: " << *(numbers + 2);
return 0;
}

Output

Second Element: 5
Last Element: 10

As expected, the values of the second and last elements are changed to 5 and 10,
respectively.

Find Largest Array Element Using Pointers
In Learn C++ Basics, we had written a program like the one below to find the largest
element of the array.

#include <iostream>
using namespace std;
int main() {
// an array of numbers
int numbers[5] = {55, 64, 75, 80, 65};
// assign the first element of the array to the largest variable
int largest = numbers[0];
// iterate each element of the array
// if ith element is greater than largest
// assign that element to largest
for (int i = 1; i < 5; ++i) {
if (largest < numbers[i]) {
largest = numbers[i];
}
}
cout << "Largest: " << largest;
return 0;
}
// Output:
// Largest: 80

Now, let's use pointer notation to achieve the same result.

#include <iostream>
using namespace std;
int main() {
// an array of numbers
int numbers[5] = {55, 64, 75, 80, 65};

// assign the first element of the array to the largest variable
int largest = *numbers;
// iterate each element of the array
// if ith element is greater than largest
// assign that element to largest
for (int i = 1; i < 5; ++i) {
if (largest < *(numbers + i)) {
largest = *(numbers + i);
}
}
cout << "Largest: " << largest;
return 0;
}
// Output:
// Largest: 80

As you can see, we have successfully found the largest element. Here, we have
replaced

 numbers[0] with *numbers (to indicate the first element)
 numbers[i] with *(numbers + i) (to indicate the ith element)

Here's how this code works:

i *(numbers + i) largest < *(numbers +i) largest

1 64 true 64

2 75 true 75

3 80 true 80

4 65 false 80

Pointers & Functions

Revise Functions
Before we move forward, let's revise the working of a function with an example.

#include <iostream>
using namespace std;
// function to add two numbers
int add_numbers(int n1, int n2) {
int sum = n1 + n2;
return sum;
}
int main() {
int number1 = 32;
int number2 = 44;
// function call
int result = add_numbers(number1, number2);
cout << "Result: " << result;
return 0;
}
// Output:
// Result: 76

In the above program, we have created the add_numbers() function that takes two
parameters, n1 and n2 and finds their sum. The parameters are like input given to the function
while the resulting sum is the function output.

And just like regular variables, it is also possible to pass addresses as arguments to functions. It's
because an address is also a value.

Next, we will see an example of passing addresses to a function.

Pointer as Function Argument
Let's start with an example.

#include <iostream>
using namespace std;
// function that accepts address as parameter
void change_value(int* n) {
// change value at address to 120
*n = 120;
}
int main() {
int number = 35;
cout << "Number (before): " << number << endl;
// call function with address of number as argument
change_value(&number);
cout << "Number (after): " << number;
return 0;

}

Output

Number (before): 35
Number (after): 120

In the above example, we have passed the address of the number variable during the function call.

change_value(&number);

This address is now assigned to the n pointer (function parameter).

Inside the function, we have assigned 120 to the address pointed by n.

*n = 120;

Now, the value of the number variable is also changed to 120 in the main() function.

This is because the address in the n pointer and that of the number variable are the same and we
are changing the value at the same address.

Example: Swap Two Numbers
In this example, we will swap two numbers using a function. However, this time we will
be using pointers to swap the numbers.

#include <iostream>
using namespace std;
// fuction to swap numbers
void swap_numbers(int* n1, int* n2) {
int temp;
// swap values stored in n1 and n2
temp = *n1;
*n1 = *n2;
*n2 = temp;
}
int main() {
int number1 = 34;
int number2 = 57;
// call function by passing address of both variables
swap_numbers(&number1, &number2);
cout << "After Swapping" << endl;
cout << "number1: " << number1 << endl;
cout << "number2: " << number2;
return 0;
}

Output

After Swapping

number1: 57
number2: 34

Here, the n1 and n2 pointers in the swap_numbers() function take the addresses
of number1 and number2 variables.

When the values stored in n1 and n2 addresses are swapped, the values
of number1 and number2 are also swapped in the main() function.

Return Pointers From a Function
Do you remember this code to return a value from a function?

#include <iostream>
using namespace std;
// function to add 10 to a number
int add_ten(int a) {
int sum = a + 10;
return sum;
}
int main() {
int number = 32;
// call function
int result = add_ten(number);
cout << "Result: " << result;
return 0;
}
// Output:
// Result: 42

Here, we have returned the sum variable after adding 10 to the parameter a.

Similarly, we can also return pointers from a function. Let's see an example,

#include <iostream>
using namespace std;
// function to add 10 to a number
int* add_ten(int* pt) {
// dereference the pointer
// add 10 to the variable pointed by pointer
*pt = *pt + 10;
// return the pt pointer
return pt;
}
int main() {
int number = 32;
// call add_ten() function
// pass the address of number as parameter
// store the return value in result pointer
int* result = add_ten(&number);
// print the value in number by dereferencing result
cout << "Result: " << *result;
return 0;
}
// Output:
// Result: 42

Notice These Things

 int* add_ten - int* indicates the function returns a pointer
 add_ten(int* pt) - the function parameter pt is a pointer
 *pt = *pt + 10 - add 10 to the value pointed by the pt pointer
 return pt - returns the address pointed by pt

Now, let's look at how this program works.

Here, we have passed the address of the number variable to the function and stored the
return value in the result pointer.

// function call
int* result = add_ten(&number);

Inside the add_ten() function,

 the address of number is stored in the pointer parameter pt,
 10 is added to the value of number by dereferencing pt,
 finally, the pt pointer (address of number) is returned by the function.

int* add_ten(int* pt) {
*pt = *pt + 10;
return pt;
}

Since the pt pointer in add_ten() is pointing to the number variable, the value
of number gets changed by the function.

This also means that the add_ten() function returns a pointer to the address of
the number variable, which is stored by the result pointer in main().

Thus, result is actually a pointer that points to the number variable. So when we
dereference result and print its value, we are actually printing the new value of
the number variable.

Common Mistake While Returning Pointers
Suppose you want to create a function that adds two numbers and returns a pointer to
the memory location that has the sum. In such a case, you might end up writing a
program like this:

#include <iostream>
using namespace std;
// function that returns address
// of variable that contains sum of numbers
int* add(int n1, int n2) {
// create sum variable inside function
int sum = n1 + n2;
// return address of sum variable
return ∑
}

int main() {
// call the add() function
// store the return value in sum pointer
int* sum = add(32, 10);
// print the value in sum pointer
cout << "Sum: " << *sum;
return 0;
}
// Output: Segmentation Fault

However, when you run this program, you get a Segmentation Fault error.

The compiler gives this error because the sum variable inside the add() function is only
valid inside that function. It gets destroyed once the function call is over and the
program control goes back to the main() function.

We can fix this by passing a pointer or variable declared in the main() function, and then
returning that pointer (or the address to the passed variable) from the add() function.

Next, we'll implement this solution through an example program.

Example: Fix Mistake While Returning Pointer
This is how we can solve the issue in the previous section while returning a valid
pointer/address from the function:

#include <iostream>
using namespace std;
// function that returns address
// of variable that contains sum of numbers
// 3rd parameter is a pointer
int* add(int n1, int n2, int* pt) {
// store the result in pt
*pt = n1 + n2;
// return the pt pointer
return pt;
}
int main() {
// create the sum variable
int sum;
// call the add() function
// pass the address of sum variable as 3rd argument
// store the return value in result pointer
int* result = add(32, 10, &sum);
// print the result
cout << "Sum: " << *result;
return 0;
}
// Output:
// Sum: 42

Here, we have declared the sum variable in main() and passed its address to
the add() function. The pt parameter of the function now has the address of sum.

The function then returns the address to this sum variable, which is stored in
the result pointer.

This program works because sum belongs to the main() function. Hence, it is not
destroyed when the function call is over.

Revise Pointers

Pointers Summary
Let's revise what we have learned in this chapter:

1. Memory Address

&number gives the address of the number variable. For example,

#include <iostream>
using namespace std;
int main() {
int number = 32;
// print the address of number variable
cout << &number;
return 0;
}
// Output: 0x7ffeb9e74a54

2. Pointer Variables

A pointer variable is used to store the memory address of a variable. For example,

#include <iostream>
using namespace std;
int main() {
int number = 32;
// pt is a pointer variable that stores
// memory address of number
int* pt = &number;
cout << pt;
return 0;
}
// Output: 0x7ffc89fa4bfc

3. Access Value Using Pointers

*pt accesses the value pointed by the address stored in the pt pointer. This process is known
as dereferencing a pointer. For example,

#include <iostream>
using namespace std;
int main() {
int number = 32;
// pt is a pointer variable that stores

// memory address of number
int* pt = &number;
// value stored in the address pointed by pt
cout << *pt;
return 0;
}
// Output: 32

We can also use pointers with arrays and functions which we will revise using the following
examples.

 Add 10 to each element of the array
 Challenge: Multiply each element of the array by N
 Add two numbers using a function
 Challenge: Divide two numbers using a function

Add 10 to Each Element of the Array
Suppose we have an array with elements: {8, 7, 21, 13}. Now, we need to add 10 to each
element of the array so our final array looks like this: {18, 17, 31, 23}.

Thought Process

First, we need to access each array element using a loop. Inside the loop, we need to add 10 to
each element and assign the result to the respective position.

#include <iostream>

using namespace std;

int main() {

int numbers[4] = {8, 7, 21, 13};

// loop to access each array element

for (int i = 0; i < 4; ++i) {

// add 10 to the current array element

*(numbers + i) = *(numbers + i) + 10;

}

// print the array

cout << "Array Elements: ";

for (int i = 0; i < 4; ++i) {

cout << *(numbers + i) << ", ";

}

return 0;

}

Output

Array Elements: 18, 17, 31, 23,

In the above example, notice the line:

*(numbers + i) = *(numbers + i) + 10;

Here, *(numbers + i) accesses the array element at position i, adds 10 to it and assigns the result
to the same position.

Quick Reminder:

 numbers - gives the address of first array element
 *numbers - gives the value of the first element
 numbers + 1 - gives the address of the second element
 *(numbers + 1) - gives the value of the second element

 numbers + i - gives the address of the ith element
 *(numbers + i) - gives the value of the ith element

Add Two Numbers Using Function

Thought Process

Here, we will be using pointers so we need to create a function that accepts pointers as
its arguments.

We also want to return a pointer, so we will use a pointer as the return type as well.

Based on what we have learned so far, our function will look like this:

int* add_numbers(int* n1, int* n2) {

int* sum = *n1 + *n2;

return sum;

}

However, this will give us an unexpected output because we are trying to return the
address of the local pointer sum.

To avoid this, we need to create sum inside the main() and pass its address along with
the addresses of two other numbers.

Let's implement that.

#include <iostream>

using namespace std;

// function to add two numbers

int* add_numbers(int* n1, int* n2, int* sum) {

*sum = *n1 + *n2;

return sum;

}

int main() {

int number1 = 75;

int number2 = 69;

int sum;

// call function with address as parameter

int* result = add_numbers(&number1, &number2, &sum);

cout << "Result: " << *result;

return 0;

}

Output

Result: 144

As you can see, we get the desired output.

OOP (Basics)
Understanding OOP

Object-oriented Programming (OOP)
In this chapter, we will learn about object-oriented programming (OOP) and how to implement it in
our code.

Object-oriented programming (OOP) is a popular technique to solve programming problems by
creating objects.

Let's try to understand it with an example.

Suppose we need to store the name and the test score of university students. And based on the
test score, we need to find if a student passed or failed the examination. Then, the structure of our
code would look something like this.

Figure: Code Structure

Now, imagine we have to store the name and the test score of multiple students instead of one
student.

If we were to use the same approach, we can use the same check_pass_fail() function.

However, we would need to create multiple variables to store the name and the score for each
student. This would make our code less organized and messy.

Figure: Code Structure

Since these data and functions are related, it would be better if we could treat them as a single
entity. And we can do that by creating objects.

This approach to creating objects to solve problems is known as object-oriented programming.

Next, we will see how we use objects to solve this problem.

Introduction to Classes and Objects
There are two steps involved in creating objects:

1. Define a class
2. Create objects from the class

Define a Class

To solve the problem mentioned on the last page, we will first define a class named Student.

Figure: The Student Class

This Student class has two variables name and score, and a function check_pass_fail().

Think of a class as a blueprint for a house. It contains all the details about the floors, doors, windows, etc.
Based on these descriptions, we can build a house. The actual physical house is the object.

Now, let's see how we can create objects.

Creating Objects

Once we define a class, we can create as many objects as we want from the class.

Figure: Classes and Objects

In the image, we have created objects student1 and student2 from the Student class.

All the objects of this Student class will have their own name and score variables and can use
the check_pass_fail() function.

Note: The variables and functions of a class are called class members. The variables are called member
variables or data members, and the functions are called member functions.

Classes & Objects

Creating a Class
As mentioned before, we need to create a class first before we can create objects from
it.

In C++, we use the class keyword to create a class. For example,

class Car {
 ...
};

Here, we have created a class named Car.

A class can contain:

 data members - variables/arrays to store data
 member functions - to perform tasks on data members

Note: A class ends with the code };. In the past, we have ended loops and functions
with the } symbol. For classes, however, we need to add a semicolon ; after the closing
brace }.

We will gradually add different functions and variables inside a class. But first, let's
create objects from the class.

Creating Objects
Here's how we can create objects of a class.

// create a class
class Car {
 ...
};

// create object of the Car class
Car car1;
Car car2;

Here, car1 and car2 are objects of the Car class.

Next, we will learn how variables and functions are used with a class.

Add Member Variables
As mentioned earlier, a class contains data members (variables). Let's see how we can add them
to the Car class.

class Car {
public:
// add member variables
int gear = 6;
string brand = "Audi";
};

Here, gear and brand are two data members inside the Car class.

Access Member Variables Using Object

Now, we will use an object of the Car class to access data members.

#include <iostream>
using namespace std;
class Car {
public:
// add data members
int gear = 6;
string brand = "Audi";
};
int main() {
// create object of Car
Car car1;
// access data members using object
cout << "Gear: " << car1.gear << endl;
cout << "Brand: " << car1.brand;
return 0;
}

Output

Gear: 6
Brand: Audi

In the above example, we have created an object named car1 of the Car class. Notice the codes
inside the cout statements:

// access the member variable gear
car1.gear
// access the member variable brand
car1.brand

Here, we have used the object along with the . dot operator to access the member variables of the
class.

Note: In our class, we have directly assigned values to the gear and brand variables. We are doing
this to keep things simple for the moment. But this is not the proper way to use data members in
OOP. We will return to this topic later and use member variables correctly.

Next, we will learn to add member functions inside a class.

Adding Member Functions
Now, let's see how we can add member functions to a class.

class Car {
public:
// add member function
void check_status(int gear) {
if (gear >= 1) {
cout << "Car is running.";
}
else {
cout << "Car is not running."
}
}
};

Here, we have added the check_status() member function inside the Car class. This function
accepts a single parameter gear and prints if the car is running or not.

Access Member Function Using Object

#include <iostream>
using namespace std;
class Car {
public:
// add member function
void check_status(int gear) {
if (gear >= 1) {
cout << "Car is running." << endl;
}
else {
cout << "Car is not running." << endl;
}
}
};
int main() {
// create object of Car
Car car1;
// access member function
car1.check_status(6);
car1.check_status(0);

return 0;
}

Output

Car is running.
Car is not running.

Notice the code,

car1.check_status(6);
car1.check_status(0);

Here, we are using the object car1 along with the . dot operator to call the member function.

Assign Values to Member Variables Using Objects
In our earlier example, we have used member variable like this:

class Car {
public:
// member variables
int gear = 6;
string brand = "Audi";
};

This is not the proper way to use member variables In the OOP approach.

Instead, we should just declare variables inside the class and assign values using
objects.

Let's see an example.

#include <iostream>
using namespace std;
class Car {
public:
// member variable
int gear;
string brand;
};
int main() {
// create an object of Car
Car car1;
// assign values to member variable
car1.gear = 6;
car1.brand = "Audi";
// access member variable
cout << "Gear: " << car1.gear << endl;
cout << "Brand: " << car1.brand;
return 0;
}

Output

Gear: 6
Brand: Audi

In the above example, we have created an object of the Car class.

Car car1;

Then, we used the car1 object with the dot operator . to assign values to the
variables gear and brand.

car1.gear = 6;
car1.brand = "Audi";

Let's see one more example.

Create Multiple Objects

#include <iostream>
using namespace std;
class Student {
public:
// data members
string name;
int score;
};
int main() {
// create two Student objects
Student student1, student2;
// initialize member variables of student1
student1.name = "Maria";
student1.score = 56;
// print member variables of student1
cout << "Name: " << student1.name << endl;
cout << "Score: " << student1.score << endl;
// initialize member variables of student2
student2.name = "Johnny";
student2.score = 32;
// print member variables of student2
cout << "Name: " << student2.name << endl;
cout << "Score: " << student2.score;
return 0;
}

Output

Name: Maria

Score: 56

Name: Johnny
Score: 32

In the above example, we have created two objects: student1 and student2 from
the Student class.

Student student1, student2;

And both the students have their own names and scores.

With this approach, it's now easier to visualize the overall program. That is, student1 is
Maria and her score is 56. Similarly, student2 is Johnny and his score is 32.

Figure: Create Multiple Objects

Modify Member Variables
We can also change the value of a member variable using objects. For example,

#include <iostream>
using namespace std;
class Student {
public:
string name;
};
int main() {
Student student1;
// assign value to name
student1.name = "Rosie";
cout << "Topper: " << student1.name << endl;

// change the value of name
student1.name = "Smith";
cout << "Topper: " << student1.name;
return 0;
}

Output

Topper: Rosie
Topper: Smith

Here, the initial value of name was "Rosie", which we then changed to "Smith".

Multiple Classes
We can also create multiple classes in a single program and access data between one another.
For example,

#include <iostream>
using namespace std;
class Student {
public:
string name;
};
class Department {
public:
int code;
};
int main() {
// create an object of Student
Student student;
// access data member of student
student.name = "Jackie";
cout << "Student Name: " << student.name << endl;
// create an object of Department
Department department;
// access data member of department
department.code = 32;
cout << "Department Code: " << department.code;
return 0;
}

Output

Student Name: Jackie
Department Code: 32

Here, we have created two classes: Student and Department.

We will learn more about the uses of multiple classes in later chapters. For now, just remember it
is also possible.

Why Objects and Classes?
We could have written all the programs in this lesson without using classes and objects. So you
might be wondering where to use classes and objects.

As we have mentioned before, object-oriented programming is an approach we can take to solve
problems; it's not mandatory to use classes and objects to solve problems.

So, when should we use classes and objects?

If we are working on a complex problem where variables and functions are related, treating them
as a single entity by creating objects makes sense. For example,

Suppose we are working on a racing game.

To solve this problem, we can use objects such as cars, racing tracks, etc. Now, instead of
thinking about individual variables and functions, we start thinking about objects and how one
object interacts with the other. This helps us to divide a complex problem into smaller sub-
problems.

So here's our suggestion:

If you are working on a simple problem, do not use object-oriented programming because you
have to write a lot of code.

However, if you are working on a complex problem where many variables and functions are
related, creating objects to solve that problem makes sense.

Constructor

C++ Constructors
In C++, a constructor is similar to a member function, but it doesn't have a return type,
and it has the same name as the class. For example,

class Student {
public:
// constructor
Student() {
...
}
// member function
void check_name() {
...
}
};

In the above example, Student() is a constructor and check_name() is a member function.
You can see that the constructor doesn't have a return type, and it has the same name
as the class (Student).

In C++, the constructor is called automatically when we create an object. Let's see an
example,

#include <iostream>
using namespace std;
class Student {
public:
// constructor
Student() {
cout << "Calling Constructor";
}
};
int main() {
// create an object
Student student1;
return 0;
}

Output

Calling Constructor

Here, the code Student student1; calls the constructor. That's why we get the output.

Types of Constructors
There are broadly two types of constructors in C++. They are

 Default Constructors
 Parameterized Constructors

Let's start with default constructors first.

Default Constructors

In C++, a default constructor is a constructor that has no parameters, and thus takes no
arguments. The constructors we've been dealing with so far are all default constructors.

Let's see an example,

#include <iostream>

using namespace std;

class Student {

public:

int marks;

// default constructor

Student() {

marks = 0;

}

};

int main() {

// create an object

Student student1;

// print the value of marks

cout << "Marks: " << student1.marks;

return 0;

}

// Output: Marks: 0

Here, the Student() constructor doesn't take any argument. Hence, it's a default constructor.

Parameterized Constructors
As mentioned earlier, a parameterized constructor takes in arguments. We use this type of
constructor to assign values to member variables for different objects.

Let's explore this with an example.

class Car {
public:
int gear;
// parameterized constructor
Car(int gear_no) {
gear = gear_no;
}
};

Here, Car() is a parameterized constructor that accepts a single parameter, gear_no.

Calling Parameterized Constructor

Just like any other constructor, a parameterized constructor is also called while creating objects.
However, during the object creation, we pass arguments to the constructor. For example,

// call constructor
Car car1(5);
Car car2(6);

Here, the value of gear_no will be

 5 for the object car1
 6 for the object car2

Let's clarify this by writing a complete program.

#include <iostream>

using namespace std;
class Car {
public:
int gear;
// parameterized constructor to initialize gear
Car(int gear_no) {
gear = gear_no;
}
};
int main() {
// create objects of Car: car1 and car2
// pass 5 and 6 as arguments to constructors
// of car1 and car2 respectively
Car car1(5);
Car car2(6);
// print values of gear for car1 and car2
cout << "Gear for car1: " << car1.gear << endl;
cout << "Gear for car2: " << car2.gear;
return 0;
}

Output

Gear for car1: 5
Gear for car2: 6

In the above example, we have used the parameterized constructor to assign the values of
the gear data member.

Figure: Passing different arguments to the constructor using different objects

Let's see one more example.

Example: Parameterized Constructor

#include <iostream>
using namespace std;
class Student {
public:
string name;
int score;
// parameterized constructor that takes two arguments
Student(string student_name, int student_score) {
name = student_name;
score = student_score;
}
};
int main() {
// create objects of Student
Student student1("Jackie", 76);
Student student2("Maria", 82);
// print data members for student1
cout << "---First Student---" << endl;
cout << "Name: " << student1.name << endl;
cout << "Score: " << student1.score << endl;
// print data members for student2
cout << "---Second Student---" << endl;
cout << "Name: " << student2.name << endl;
cout << "Score: " << student2.score;
return 0;
}

Output

---First Student---

Name: Jackie

Score: 76

---Second Student---

Name: Maria
Score: 82

In the above example, we have used a parameterized constructor to initialize the member
variables, name and score.

Student(string student_name, int student_score) {
name = student_name;
score = student_score;
}

Here, while creating the objects:

Student student1("Jackie", 76);

 Jackie and 76 are assigned to student_name and student_score, respectively.
 Hence, student1.name will become Jackie and student1.score becomes 76.

Figure: Multiple Arguments to Parameterized Constructor

Student student2("Maria", 82);

 Maria and 82 are assigned to student_name and student_score, respectively.
 Hence, student2.name will become Maria and student2.score becomes 82.

Figure: Multiple Arguments to Parameterized Constructor

Going Forward: Because constructors are executed automatically when we create an object, they
are thus excellent tools for initializing member variables. For the rest of this lesson, we will be
using constructors almost exclusively for this task.

Constructor Initializer List
In C++ constructors, we can also use an initialization list to initialize member variables. This will
make our code look cleaner and more efficient. Let's see an example,

Suppose we are initializing the name and score variables using a constructor like this:

class Student {
 public:

 string name;
 int score;

 // constructor to initialize values
 Student(string sudent_name, int student_score) {
 name = student_name;
 score = student_score;
 }
};

Now let's see how we can do this using the initialization list.

class Student {
 public:

 string name;
 int score;

 // constructor to initialize values
 Student(string n, int s): name(n), score(s) {}
};

You can see our code now looks cleaner. Here,

 n and s are values passed to the constructor.
 n is assigned to the variable name.
 s is assigned to the variable score.

Now, let us put this method into practice with the help of a program.

Example: Constructor Initializer List

#include <iostream>
using namespace std;
class Student {
public:
string name;
int score;
// constructor initializer list
Student(string n, int s) : name(n), score(s) {}
};
int main() {
// create objects of Student
Student student1("Jackie", 76);
Student student2("Maria", 82);
// print data members for student1
cout << "---First Student---" << endl;
cout << "Name: " << student1.name << endl;

cout << "Score: " << student1.score << endl;
// print data members for student2
cout << "---Second Student---" << endl;
cout << "Name: " << student2.name << endl;
cout << "Score: " << student2.score;
return 0;
}

Output

---First Student---
Name: Jackie
Score: 76
---Second Student---
Name: Maria
Score: 82

Here, we have created a constructor named Student(). We then used the initializer list to initialize
the member variables name and score.

Student(string n, int s) : name(n), score(s) {}

In main(), we have created two objects - student1 and student2 - and passed different arguments
for each object.

Student student1("Jackie", 76);
Student student2("Maria", 82);

As a result, for

 car1 - name will be Jackie and score will be 76
 car2 - name will be Maria and score will be 82

Initializer List: Key Things to Remember
1. An initializer list is more efficient and cleaner. So it is preferred over a normal constructor.

2. Member variables should be initialized in the same order they are declared. For example,

class Car {
 public:
 int gear, speed;

 // bad practice
 Car(): speed(200), gear(5) {}
};

Here, gear is declared first. So it should also be initialized first.

Common Mistake
Calling the parameterized constructor without passing arguments

#include <iostream>
using namespace std;

class Car {
 public:
 int gear;

 // constructor with parameter
 Car(int gear_no) {
 gear = gear_no;
 }
};

int main() {

 // error code
 Car car1;

 cout << car1.gear;
 return 0;
}

Here, the above program will cause an error. It's because the Car() constructor accepts
an argument gear_no.

However, we are not passing any arguments while creating the object of the Car class.

// error code
Car car1;
// correct code
Car car1(4);

Public and Private Modifiers

Access Modifiers
So far in our example, we have been using the public keyword along with our member
variables and functions within the class.

class Car {
 public:
 // code
};

Here, public means these data members and functions can be accessed from
anywhere in the program. Hence, we were able to access them from
the main() function.

However, there might be situations where we wouldn't want our data members and
functions to be accessed from outside. For this, we use access modifiers in C++.

Access modifiers are used to set the visibility of data members, functions, and even
classes. For example, if we don't want our class members to be accessed from outside,
we can mark them as private using the private access modifier.

class Car {
 private:
 // code
};

In this lesson, we will learn about two major types of access modifiers in C++.

 public - allows access from outside
 private - prevents access from outside

There's also a third access modifier - protected. But we'll learn about it in a later
chapter.

So, let's get started with the public modifier.

Public Modifier
As the name suggests, variables and functions declared with the public access modifier
can be accessed from any class. Let's see an example,

#include <iostream>
using namespace std;
class Student {
// public variable
public:
string name;
};
int main() {
// create object of Student
Student student1;
// access the public variable of the Student class
student1.name = "Rosie";
cout << "Student Name: " << student1.name;
return 0;
}
// Output: Student Name: Rosie

In the above example, we have used the public access modifier with the name variable.
That's why we are able to assign a new value and access its value from
the main() function.

Figure: public Access Modifier

Public Functions
We can also use the public access modifier with member functions. Let's see an example.

#include <iostream>
using namespace std;
class Student {
// public member function
public:
void display_info() {
cout << "I am a Student";
}
};
int main() {
// create object of Student
Student student1;
// access the public member function
student1.display_info();
return 0;
}
// Output: I am a Student

As you can see, we are able to access the public member function of the Student class from
the main() function.

Access Public Members From Another Class
In this example, we will try to access public class members of one class from another class.

#include <iostream>
using namespace std;
class Source {
// public data member
public:
double number = 200.56;
};
// class to access public members of Source
class Destination {
// public member function
public:
void access_source() {
// create an object of the Source class
Source src;
// access the member of Source
cout << "Data of Source: " << src.number;
}
};
int main() {
// create an object of Destination
Destination dest;
// call the function of destination
dest.access_source();
return 0;
}
// Output: Data of Source: 200.56

In the above example, we have created two classes: Source and Destination. Here, we are trying to
access the public member variable (number) of Source from Destination.

The access_source() function of Destination first creates an object of the Source class and then
accesses the data member.

void access_source() {
// create an object of the Source class
Source src;
// access the member of Source
cout << "Data of Source: " << src.number;
}

It's possible because number is a public data member inside Source.

Private Modifier
As mentioned earlier, if we create a variable with a private access modifier, it can't be
accessed from outside. Let's see an example.

#include <iostream>
using namespace std;
class Student {
// create private variable
private:
string name;
};
int main() {
// create an object of Student
Student student1;
// try to access the private data member
student1.name = "Felix";
cout << "Name: " << student1.name;
return 0;
}

When we run this code, we will get an error:

std::string Student::name' is private within this context
17 | student1.name = "Felix"

Here, you can see that we get an error when we try to access
the private variable name from the main() function.

Figure: Private members cannot be accessed from outside the class

Private Functions
Just like a public function, we can also mark our function as private. Let's look at an example.

#include <iostream>
using namespace std;
class Student {
// create private function
private:
void display() {
cout << "This is it.";
}
};
int main() {
// create object
Student student;
// error: cannot access private function
student.display();
return 0;
}

When we run this code, we will get a familiar error:

error: 'void Student::display()' is private within this context
19 | student.display();
| ^

Private By Default
In C++, all class members are private by default (unless declared otherwise). So, the code

class Student {
private:
string name;
void display_info() {
...
}
};

is equivalent to

class Student {
string name;
void display_info() {
...
}
};

Let's see an example,

#include <iostream>
using namespace std;
class Student {

string name;
void display_info() {
cout << "Name: " << name;
}
};
int main() {
// create an object of Student
Student student1;
// access the private variable
student1.name = "Felix";
// access the private function
student1.display_info();
return 0;
}

Error Message

error: 'std::string Student::name' is private within this context

 19 | student1.name = "Felix";

...

error: 'void Student::display_info()' is private within this context
 22 | student1.display_info();

Getter and Setter Functions
We know that a private data member cannot be accessed from outside of a class. However, if we
need to access them, we can use getter and setter functions.

 Setter Function - allows us to set the value of data members
 Getter Function - allows us to get the value of data members

Let's see an example.

#include <iostream>
using namespace std;
class Student {
private:
string name;
};
int main() {
// create an object of Student
Student student1;
// access the private name
student1.name = "Felix";
cout << "Name: " << student1.name;
return 0;
}

We know this code will cause an error because we are trying to directly access the private variable
from the main() function.

Now let's use the getter and setter functions to access the name variable.

#include <iostream>
using namespace std;
class Student {
private:
string name;
public:
// setter function
void set_name(string student_name) {
name = student_name;
}
// getter function
string get_name() {
return name;
}
};
int main() {
// create an object of Student
Student student1;
// assign value to name using setter function
student1.set_name("Felix");
// access value of name using getter function
cout << "Name: " << student1.get_name();
return 0;
}

Output

Name: Felix

As you can see, we have successfully assigned a new value and accessed it using the getter and
setter functions.

Next, we will see the working of this program.

Working: Getter and Setter Functions
In the last example, we created a class named Student with a private variable name.

private:
 string name;

Since it cannot be accessed from outside the class, we have used
the public functions get_name() and set_name() to access them.

1. Setter Function

// setter function
void set_name(int student_name) {
 name = student_name;
}

Here, student_name is the parameter of the setter function set_name(). Then, we have assigned the
value of this parameter to the private variable name.

2. Getter Function

// getter function
int get_name() {
 return name;
}

Here, we have simply returned the value of the private variable name.

Inside the main() function, we are able to access and modify the name variable using these public
functions.

Figure: Getter and Setter functions can access private members

Constructors Should Be Public

We learned about constructors in the previous lesson. We know that constructors are called while
creating an object of a class. So we should always make the constructor public.

Otherwise, we won't be able to create an object of the class. For example,

#include <iostream>
using namespace std;
class Student {
private:
// private constructor
Student() {
cout << "Private Constructor";
}
};
int main() {
// create an object of the Student class
Student student1;
return 0;
}

When we run this code, we will get an error:

error: 'Student::Student()' is private within this context
 16 | Student student1;

This is because we have declared our constructor as private, so the compiler is not able to access
it from the main() function while creating the object.

Hence, we should always make our constructors public.

Revise OOP (Basics)

Understanding OOP
C++ is an object-oriented programming language where we solve complex problems by
dividing them into objects.

1. Create a Class

class Rectangle {
// code
};

Here, Rectangle is the name of the class. A class can contain data members such as
variables (to store data) and member functions (to perform operations). Collectively,
they are known as class members.

class Rectangle {
public:
// data members
int length, breadth;
// member function
void calculate_area(){
int area = length * breadth;
cout << "Area: " << area;
}
};

2. Create Objects

Here's how we create objects in C++.

Rectangle rectangle1;

Now we can use the rectangle1 object to access the class members. For example,

#include <iostream>
using namespace std;
class Rectangle {
public:
// data members
int length, breadth;
// member function
void calculate_area(){
int area = length * breadth;
cout << "Area: " << area;
}
};
int main() {
// create object of the Rectangle class
Rectangle rectangle1;
// assign values to length and breadth

rectangle1.length = 12;
rectangle1.breadth = 5;
// call the member function
rectangle1.calculate_area();
return 0;
}

Output

Area: 60

C++ Constructor
A constructor is similar to a function but it doesn't have a return type. It has the same name as the
class. For example,

class Rectangle {
public:
// constructor
Rectangle() {
...
}
};

Here, Rectangle() is a constructor.

Constructors that don't take any argument (such as Rectangle()) are known as default
constructors.

Parameterized Constructor

A constructor can also accept parameters. For example,

#include <iostream>
using namespace std;
class Rectangle {
public:
// member variables
int length, breadth;
// parameterized constructor
// that accepts two parameters
Rectangle(int len, int br) {
length = len;
breadth = br;
}
// member function
void calculate_area() {
int area = length * breadth;
cout << "Area: " << area;
}
};
int main() {
// create object of the Rectangle class
// pass 12 and 5 as arguments to its constructor

Rectangle rectangle1(12, 5);
// call the member function
rectangle1.calculate_area();
return 0;
}
// Output: Area: 60

Here, you can see we have passed two arguments to the constructor while creating
the rectangle1 object.

Public and Private Modifiers
In C++, the public and private keywords are known as access modifiers.

Public Access Modifier

Class members declared as public can be accessed from outside the class (say,
the main() function). For example,

#include <iostream>
using namespace std;
class Rectangle {
public:
// public member variables
int length, breadth;
// public member function
void calculate_area() {
int area = length * breadth;
cout << "Area: " << area;
}
};
int main() {
// create object of the Rectangle class
Rectangle rectangle1;
// access public member variables
rectangle1.length = 12;
rectangle1.breadth = 5;
// access public member function
rectangle1.calculate_area();
return 0;
}
// Output: Area: 60

Private Access Modifier

Class members declared as private cannot be accessed from outside the class. For example,

#include <iostream>
using namespace std;
class Rectangle {
private:
// private member variables
int length, breadth;
// private member function

void calculate_area() {
int area = length * breadth;
cout << "Area: " << area;
}
};
int main() {
// create object of the Rectangle class
Rectangle rectangle1;
// error: cannot access private member variables
rectangle1.length = 12;
rectangle1.breadth = 5;
// error: cannot access private member function
rectangle1.calculate_area();
return 0;
}

Getter and Setter Functions

We need to create public getter and setter functions in order to access private members of a
class. For example,

#include <iostream>
using namespace std;
class Square {
private:
// private variable
int side;
public:
// setter function that assigns
// the value of the s parameter
// to the private variable side
void set_side(int s) {
side = s;
}
// getter function that returns
// the value of the private variable
int get_side() {
return side;
}
};
int main() {
// create object of the Square class
Square square1;
// call setter function
// initialize side to 6
square1.set_side(6);
// call getter function to calculate area
int area = square1.get_side() * square1.get_side();
// print the area
cout << "Area: " << area;
return 0;
}
// Output: Area: 36

OOP (Basics) Examples
In this section, we will create examples and solve challenges related to OOP.

Here is a list of programs we will create in this lesson:

 Compute the area of a circle
 Find the average marks of a student
 Challenge: determine pass or fail
 Get and set salary of Employee

Compute the Area of a Circle
In this example, we will first create a class named Circle. Inside the class, we will create:

 member variables - pi (with value 3.14) and radius (no initial value)
 constructor - initialize the value of radius
 member function - calculate_area() to compute the area of the circle

Note: The area of a circle is given by the formula pi * radius * radius.

Source Code
#include <iostream>

using namespace std;

class Circle {

public:

double pi = 3.14;

double radius;

// constructor to initialize radius

Circle(double rad): radius(rad) {}

// function to calculate area

double calculate_area() {

return pi * radius * radius;

}

};

int main() {

// create object of Circle

// pass a double value as argument

Circle circle(6.99);

// call calculate_area() function

cout << "Area: " << circle.calculate_area();

return 0;

}

// Output: Area: 153.421

In the above example, we have used the constructor initializer list to initialize the value of
the radius variable.

Circle(double rad): radius(rad) {}

While creating the circle object, the value 6.99 is passed to the constructor.

Circle circle(6.99);

We then called the calculate_area() function to compute the area of the circle.

Find the Average Marks of a Student
In this example, we will find the average marks of a student using class and object. Here, we will
first create a Student class.

The class will include

 an integer array named marks to store marks of the student
 a constructor to initialize the marks array.
 a calculate_average() member function to compute the average marks

Source Code
#include <iostream>

using namespace std;

class Student {

public:

// create marks array

int marks[4];

// constructor to initialize marks

Student(int mrk[4]) {

for(int i = 0; i < 4; ++ i) {

marks[i] = mrk[i];

}

}

// function to calculate the average

double calculate_average() {

int sum = 0;

// ranged loop to calculate sum

for(int num : marks) {

sum = sum + num;

}

return sum / 4.0;

}

};

int main() {

// initialize the marks array

int marks[4] = {96, 79, 81, 65};

// create Student object

// pass marks[] array as argument to constructor

Student student(marks);

// find the average marks

// call the calculate_average() function

double average = student.calculate_average();

// print the average marks

cout << average;

return 0;

}

// Output: 80.25

In this program, we have created a class named Student, which contains an integer array
named marks[].

We have then used the Student() constructor to initialize marks[].

Student(int mrk[4]) {

for(int i = 0; i < 4; ++ i) {

marks[i] = mrk[i];

}

}

To calculate the average of the marks, we use the member function calculate_average().

In main(), we initialized another marks[] array and passed it to the constructor of the student object
as an argument.

// initialize the marks array

int marks[4] = {96, 79, 81, 65};

// create Student object by passing marks[] as argument

Student student(marks);

Finally, we have called the calculate_average() function, whose return value is stored in
the average variable.

double average = student.calculate_average();

Get and Set Salary of Employee

Problem Description

Suppose a company increases the salary of every employee by a certain percentage.
Create a program to calculate the salary of employees after the increment.

Thought Process

Here, we need to create an Employee class with three variables: name, current_salary,
and new_salary. Since the company increases the salary by a certain percentage, we
need to make the new_salary private, so that it cannot be modified randomly from
outside of the class.

We will then use setter and getter functions to increase the salary by the specified
percentage and return the increased salary.

Source Code
#include <iostream>

using namespace std;

class Employee {

private:

double new_salary;

public:

string name;

double current_salary;

// constructor

Employee(string emp_name, double emp_current_salary) {

name = emp_name;

current_salary = emp_current_salary;

}

// set new new_salary

void set_salary(double percentage) {

new_salary = current_salary + (percentage / 100.0) * current_salary;

}

// get new_salary

double get_salary() {

return new_salary;

}

};

int main() {

Employee emp1("Felix", 25213.23);

// increase salary by 20%

emp1.set_salary(20.00);

// print employee information

cout << "Name: " << emp1.name << endl;

cout << "New Salary: " << emp1.get_salary() << endl;

Employee emp2("Maria", 8732.32);

// increase salary by 30%

emp2.set_salary(30.00);

// print employee information

cout << "Name: " << emp2.name << endl;

cout << "New Salary: " << emp2.get_salary() << endl;

return 0;

}

Output

Name: Felix

New Salary: 30255.9

Name: Maria
New Salary: 11352

In the above example, we have increased the salaries
of Felix and Maria by 20% and 30%, respectively.

Here, you can see we have declared new_salary as private, so it can only be initialized
by the set_salary() function.

Inheritance
Inheritance

Inheritance Introduction
In the last chapter, we learned about object-oriented programming in C++. Now, let's
learn about inheritance, which is a very important concept in OOP.

Let's create a scenario to understand what inheritance is and what problem it solves.

Why Inheritance?

Suppose we need to create a racing game with cars and motorcycles as vehicles.

To solve this problem, we can create two separate classes to handle each of their
functionalities.

However, both cars and motorcycles are vehicles and they will share some common
variables/arrays and functions.

So instead of creating two independent classes, we can create the Vehicle class that
shares the common features of both cars and motorcycles. Then, we can derive
the Car class from this Vehicle class.

In doing so, the Car class inherits all the variables and functions of the Vehicle class.
And we can add car-specific features in the Car class.

Similarly, we can derive the Motorcycle class that inherits from the Vehicle class. Again,
this Motorcycle class gets all vehicle-specific variables and functions from
the Vehicle class, along with the unique features of motorcycles.

Figure: C++ Inheritance

This is the basic concept of inheritance. Inheritance allows a class (child or derived
class) to inherit variables and functions from another class (parent or base class).

In our example, Vehicle is the superclass (also known as parent or base
class) and Car and Motorcycle are subclasses (also known as child or derived classes).

Next, we will learn to implement inheritance in C++.

C++ Inheritance
Let's see an example of C++ inheritance.

Let's first create a class named Animal.

class Animal {
 public:

 void eat() {
 cout << "I can eat" << endl;
 }
};

Now, let's derive a class named Dog from this class.

// base class
class Animal {
 public:

 void eat() {
 cout << "I can eat" << endl;
 }
};

// the Dog class is derived from Animal
class Dog: public Animal {
 public:

 void bark() {
 cout << "I can bark" << endl;
 }
};

Here, we have used the code class Dog: public Animal to derive the Dog class from
the Animal class. This insures that Dog will inherit all the variables and functions of Animal.

But what does that mean?

It means that objects of the Dog class can not only access variables and functions of the Dog class,
but they can also access variables and functions of the Animal class.

Next, we will create objects of the Dog class.

Example: C++ Inheritance
Let's create an object of the Dog class and access the functions of Animal.

#include <iostream>
using namespace std;
// base class
class Animal {
public:
void eat() {
cout << "I can eat" << endl;
}
};
// the Dog class is derived from Animal

class Dog: public Animal {
public:
void bark() {
cout << "I can bark" << endl;
}
};
int main() {
// create object of Dog
Dog dog1;
// access the bark function of Dog
dog1.bark();
// access the eat() function of Animal
dog1.eat();
return 0;
}

Output

I can bark
I can eat

Here, dog1 is an object of the Dog class. Hence,

 dog1.bark() calls the bark() function of the Dog class.
 dog1.eat() calls the eat() function of the Animal class. This can be done because Dog is

derived from Animal, so the Dog class inherits all the variables and functions of Animal.

Figure: C++ Inheritance

Note: Objects of Animal can only access variables and functions of Animal. It's because Dog is
derived from Animal and not the other way around.

Derive Multiple Classes
In C++, we can derive multiple classes from a single class. Let's look at an example.

#include <iostream>
using namespace std;
class Animal {
public:
void eat() {
cout << "I can eat" << endl;
}
};
// derive Dog from Animal
class Dog: public Animal {
public:
void bark() {
cout << "I can bark" << endl;
}
};
// derive Cat from Animal
class Cat: public Animal {
public:
void get_grumpy() {
cout << "I am getting grumpy" << endl;
}
};
int main() {
// object of Dog
Dog dog1;
// access member function of Dog class
dog1.bark();
// access member function of Animal class
dog1.eat(); // object of Cat
Cat cat1;
// access member function of Cat class
cat1.get_grumpy();
// access member function of Animal class
cat1.eat();
return 0;
}

Output

I can bark

I can eat

I am getting grumpy
I can eat

As you can see, the objects of the Cat class can also access functions of Animal. It's
because Cat is also derived from Animal.

In this way, we can derive as many classes as we want from the superclass.

Inherit Class Variables
During inheritance, the child class can also inherit the member variables from the parent class.
Let's see an example.

#include <iostream>
using namespace std;
class Family {
public:
// member variable of the Family class
string family_name = "Kennedy";
};
// the Person class inherits Family
class Person : public Family {
public:
string personal_name;
// this function uses the member variable of Family
void display_name() {
cout << personal_name << " " << family_name;
}
};
int main() {
// create an object of Person
Person person;
// assign value to the personal_name
person.personal_name = "John";
// call the display_name() function
person.display_name();
return 0;
}

Output

John Kennedy

In the above example, family_name is a variable of the Family class. However, we are able to use
this inside the Person class because Person inherits the variable from Family.

Why Inheritance?
Inheritance allows us to reuse the same code in the base class. This helps save time and reduce
bugs.

Tip: We should try to reduce duplicate code as much as possible. It's because if there are duplicate codes
and we need to change something, then we have to change every duplicate code. This may result in
inflexible code and bugs.

When to Use Inheritance?

While working on large projects, if there exists an is-a relationship between any two objects, we
can use inheritance. For example,

 Dog is an Animal
 Car is a Vehicle
 Rectangle is a Polygon
 Triangle is a Polygon

It means,

 Dog can inherit from Animal
 Rectangle and Triangle can inherit from Polygon
 Car can inherit from Vehicle

Function Overloading

Introduction
In the previous lesson, we learned that during inheritance, the child class inherits functions and
variables of the parent class. For example,

#include <iostream>
using namespace std;
class Animal {
public:
void make_sound() {
cout << "Animal Sound" << endl;
}
};
class Dog: public Animal {};
int main() {
Dog dog;
dog.make_sound();
return 0;
}
// Output: Animal Sound

Here, the Dog class doesn't have the make_sound() function. However, it is able to access it because
of inheritance.

Now, suppose if the same function is also present in the Dog class, then what will happen?

Let's try that in our next example.

Function Overriding

#include <iostream>
using namespace std;
class Animal {
public:
// make_sound() function of base class
void make_sound() {
cout << "Animal Sound" << endl;
}
};
class Dog: public Animal {
public:
// make_sound() function of derived class
void make_sound() {
cout << "Woof Woof" << endl;
}
};
int main() {
// create object of child class Dog
Dog dog1;
// access function of Dog class
dog1.make_sound();
return 0;
}
// Output: Woof Woof

Here, the make_sound() function is present in both the Dog class and the Animal class. However,
when we call the function using the dog1 object, the function of the Dog class is executed.

This is because the function in the child class (Dog) overrides the same function in the parent class
(Animal). And this process is known as function overriding.

Note: Function overriding only occurs when the function is called using an object of the derived
class. When an object of the base class is used, the function of the base class is called.

Practical Use of Function Overriding
Now that we know about the basics of inheritance and function overriding, let's create a more
practical example.

Program Description

In this example, we will create a program to calculate the perimeter of different polygons like
triangles and quadrilaterals using inheritance.

 We will first create a Polygon class.
 Inside the Polygon class, we will create two functions: one to calculate the perimeter and the other to

display the info of the polygon.
 Then, we will derive a Triangle class and a Quadrilateral class from it and add functions specific

to these classes inside them.

Figure: Practical Use of Function Overriding

Polygon Class
First, we will create the Polygon class.

#include <iostream>
using namespace std;
class Polygon {
public:
// variable to store total no. of polygon sides
int total_sides;
void display_info() {
cout << "A polygon is a two dimensional shape with straight lines."<< endl;
}
int get_perimeter(int sides[]) {
int perimeter = 0;
// find sum of all sides
for (int i = 0; i < total_sides; ++i) {
perimeter = perimeter + sides[i];
}
return perimeter;
}
};
int main() {
// create array of size 3
int sides[3] = {3, 4, 5};
// create Polygon object
Polygon p1;
// initialize total_sides variable for p1 object
p1.total_sides = 3;
// call the display_info() function
p1.display_info();
// call the get_perimeter() function
// pass the sides array as argument
int perimeter = p1.get_perimeter(sides);
// print the perimeter
cout << "Perimeter: " << perimeter;
return 0;
}

Output

A polygon is a two dimensional shape with straight lines.
Perimeter: 12

Here, the get_perimeter() function of the Polygon class takes an array of sides as its parameter.
Inside the function, it computes the perimeter by adding all the sides (array elements).

int get_perimeter(int sides[]) {
int perimeter = 0;
// find sum of all sides
for (int i = 0; i < total_sides; ++i) {
perimeter = perimeter + sides[i];
}
return perimeter;

}

Inside this function, the size of the sides[] array is given by the total_sides variable.

You can see while calling get_perimeter(), we are passing the array {2, 3, 5} as an argument.

Next, we will inherit the Triangle class from Polygon.

Inheriting the Triangle Class
class Polygon {
 public:

 // variable to store total no. of polygon sides
 int total_sides;

 void display_info() {
 cout << "A polygon is a two dimensional shape with straight lines."<< endl;
 }

 int get_perimeter(int sides[]) {
 int perimeter = 0;

 // find sum of all sides
 for (int i = 0; i < total_sides; ++i) {
 perimeter = perimeter + sides[i];
 }

 return perimeter;
 }
};

class Triangle: public Polygon {
 public:

 // constructor to initialize total_sides
 Triangle() {
 total_sides = 3;
 }

 // function to override display_info() of Polygon
 void display_info() {
 cout << "A triangle is a polygon with 3 sides." << endl;
 }
};

Here, we have inherited the Triangle class from Polygon. We have also removed the code for
creating objects.

If you have noticed, both the Polygon and Triangle classes have the same display_info() function.

Since a triangle always has 3 sides, we have used the Triangle() constructor to assign a value
of 3 to the total_sides variable.

Next, we will create an object of the derived class Triangle.

Inheriting the Triangle Class (II)
Let's create an object of the Triangle class and call
the get_perimeter() and display_info() functions.

#include <iostream>
using namespace std;
class Polygon {
public:
// variable to store total no. of polygon sides
int total_sides;
void display_info() {
cout << "A polygon is a two dimensional shape with straight lines."<< endl;
}
int get_perimeter(int sides[]) {
int perimeter = 0;
// find sum of all sides
for (int i = 0; i < total_sides; ++i) {
perimeter = perimeter + sides[i];
}
return perimeter;
}
};
class Triangle: public Polygon {
public:
// constructor to initialize total_sides
Triangle() {
total_sides = 3;
}
void display_info() {
cout << "A triangle is a polygon with 3 sides." << endl;
}
};
int main() {
// create an object of Triangle
Triangle t1;
// array to store sides of triangle
int triangle_sides[3] = {8, 5, 11};
// call display_info() function
t1.display_info(); // call get_perimeter using t1
int perimeter = t1.get_perimeter(triangle_sides);
cout << "Triangle Perimeter: " << perimeter;
return 0;
}

Output

A triangle is a polygon with 3 sides.
Triangle Perimeter: 24

Here, Triangle t1; creates an object of the Triangle class.

The code t1.get_perimeter(triangle_sides) calls the get_perimeter() function with
the triangle_sides[] array as an argument.

Since get_perimeter() is not defined in Triangle, the get_perimeter() function of the Polygon class is
called.

The code t1.display_info() calls the display_info() function. However, both
the Polygon and Triangle classes have this function.

So, the function in Triangle is called because the function in the child class overrides the function
in the parent class (function overriding).

Figure: Function Overriding Example

Access the Parent Class Function
We know that when the same function is present in both the parent and child classes, the function
in the child class overrides the function in the parent class.

However, what if we want to access the function of the base class as well?

One way to do that is to create an object of the base class itself and access the function using the
object. For example,

#include <iostream>
using namespace std;
class Polygon {
public:
void display_info() {
cout << "A polygon is a two dimensional shape with straight lines." << endl;
}
};
class Triangle: public Polygon {
public:
void display_info() {
cout << "A triangle is a polygon with 3 sides." << endl;
}
};
int main() {
// create an object of Polygon
Polygon pol1;
// access the function of the base class
pol1.display_info();
return 0;
}
// Output: A polygon is a two dimensional shape with straight lines.

Figure: Access Function of Base Class

Here, we have used the object of the parent class (Polygon) to access the overridden function.

But what if we want to access the function of the base class using an object of the derived class itself?

Well, in that case, we can use the scope resolution operator ::. along with the name of the base
class Polygon.

There are two ways of using the scope resolution operator:

 inside the derived class
 with the object of the derived class

Let's see how we can use the scope operator inside the derived class.

Scope Resolution Operator
In this example, we will use the :: operator inside the derived class to access the function of the
parent class.

#include <iostream>
using namespace std;
class Polygon {
public:
void display_info() {
cout << "A polygon is a two dimensional shape with straight lines." << endl;
}
};
class Triangle : public Polygon {
public:
void display_info() {
// call the function of the base class
Polygon::display_info();
cout << "A triangle is a polygon with 3 sides." << endl;
}
};
int main() {
// create an object of Polygon
Triangle t1;
// access the function of the base class
t1.display_info();
return 0;
}

Output

A polygon is a two dimensional shape with straight lines.
A triangle is a polygon with 3 sides.

Notice the code inside the display_info() function of the Triangle class.

// inside the Triangle class
void display_info() {
Polygon::display_info();
cout << "A triangle is a polygon with 3 sides." << endl;
}

Here, Polygon::display_info() calls the function of the Polygon class.

:: Operator with Child Class Object
As mentioned before, we can also use the :: operator alongside an object of the child
class. However, we still need to specify the name of the parent class. For example,

#include <iostream>
using namespace std;
class Polygon {
public:
void display_info() {
cout << "A polygon is a two dimensional shape with straight lines." << endl;
}
};
class Triangle : public Polygon {
public:
void display_info() {
cout << "A triangle is a polygon with 3 sides." << endl;
}
};
int main() {
// create an object of Polygon
Triangle t1;
// access the function of the parent class
t1.Polygon::display_info();
// access the function of the child class
t1.display_info();
return 0;
}

Output

A polygon is a two dimensional shape with straight lines.
A triangle is a polygon with 3 sides.

Notice the following code inside the main() function.

// access the function of the parent class
t1.Polygon::display_info();

Here, the code will access the display_info() function of the parent class.

Revision: C++ Inheritance

Revise Inheritance
Let's revise what we have learned in this chapter.

1. C++ Inheritance

We use the : operator to inherit one class from another. For example,

class Person {
public:
void display() {
cout << "I am a person" << endl;
}
};
class Student: public Person {};

During inheritance, the child class inherits all the member variables and functions of the parent
class.

#include<iostream>
using namespace std;
class Person {
public:
void display() {
cout << "I am a person" << endl;
}
};
class Student : public Person {};
int main() {
Student student1;
student1.display();
return 0;
}
// Output: I am a person

2. Function Overriding

If the same function is present in both the parent class and the child class, the function in the child
class overrides the same function in the parent class.

#include<iostream>
using namespace std;
class Person {
public:
void display() {
cout << "I am a person" << endl;
}
};

class Student : public Person {
public:
void display() {
cout << "I am a student" << endl;
}
};
int main() {
Student student1;
student1.display();
return 0;
}
// Output: I am a student

3. The :: Operator

We can use the :: operator to access the overridden function of the parent class.

#include<iostream>
using namespace std;
class Person {
public:
void display() {
cout << "I am a person" << endl;
}
};
class Student : public Person {
public:
void display() {
cout << "I am a student" << endl;
// access overridden function from inside the function
Person::display();
}
};
int main() {
Student student1;
student1.display();
// access overridden function using object
student1.Person::display();
return 0;
}
// Output:
// I am a student
// I am a person
// I am a person

Inheritance Example
Now, we will solve some examples to understand the concept of inheritance more clearly.

 Create a program to implement multilevel inheritance
 Challenge: Hierarchical Inheritance

Let's get started.

Example: Multilevel Inheritance
Suppose we have 3 classes: A, B, and C. In multilevel inheritance, the class B inherits from A and
C inherits from B. Here's how the inheritance looks like:

Source Code
#include<iostream>

using namespace std;

class A {

public:

void function_A() {

cout << "Function of class A" << endl;

}

};

class B: public A {

public:

void function_B() {

cout << "Function of class B" << endl;

}

};

class C: public B {};

int main() {

// object of the class C

C obj;

// call function of the class B

obj.function_B();

// call function of the class A

obj.function_A();

return 0;

}

Output

Function of class B
Function of class A

Here, when the class B inherits A, the function of A is now inherited to B. That's why the object of
the class C is able to access functions of both classes, A and B, even though it only inherits B.

OOP (Advanced)

Pointer and Object

Introduction
We dealt with the basics of OOP in the previous chapters. In this chapter, we shall deal with some
advanced topics in object oriented programming.

We'll begin by exploring the use of pointers with objects. Let's begin!

C++ Pointer to Object
Before exploring the relationship between pointers and objects, Let's first revise the concept of
pointers.

#include <iostream>
using namespace std;
int main() {
// create a variable
int number = 36;
// create a pointer variable
int* pt;
// assign address of number variable to pointer
pt = &number;
// print the address stored in pt pointer
cout << "Value of pt: " << pt << endl;
// print the address of the number variable
cout << "Address of number: " << &number;
return 0;
}

Output

Value of pt: 0x7ffeb13ed51c
Address of number: 0x7ffeb13ed51c

Here, we have created a pointer type variable pt and assigned the address of the number variable
to it.

// integer type pointer
int* pt;
pt = &number;

Similarly, we can also create pointers to objects as well. For example, suppose we have a
class Student. Then,

// create object of Student
Student student1;

// create Student pointer
Student* student_pointer;
// assign address of the student1 object
student_pointer = &student1;

Now, if we need to access the marks variable of the student1 object, we can use the arrow
operator ->.

// set marks of student to 56
student_pointer->marks = 56;

This code is equivalent to

student1.marks = 56;

Let's look at this with an example.

Example: C++ Pointer to Object

#include <iostream>
using namespace std;
class Student {
public:
double marks;
};
int main() {
Student student1;
// create Student pointer
// assign address of student1 object to it
Student* ptr = &student1;
// set marks of student1 to 66.6
student1.marks = 66.6;
// print marks using pointer
cout << ptr->marks << endl;
return 0;
}
// Output: 66.6

Virtual Functions

Pointers and Function Overriding
We know that during function overriding, the child class overrides the same function in the parent
class.

We can also use pointers to perform function overriding. Let's see an example,

#include <iostream>
using namespace std;
class Person {
public:
void display_info() {
cout << "I am a person." << endl;
}
};
class Student: public Person {
public:
void display_info() {
cout << "I am a student." << endl;
}
};
int main() {
Student student1;
// create Student pointer
Student* ptr = &student1;
// override the function of the parent class
ptr->display_info();
return 0;
}
// Output: I am a student.

In the above example, you can see that the display_info() function is present in both the parent
class Person and the child class Student.

In main(), we have created a pointer to the student1 object. When we call the function using this
pointer, the function of the child class is called i.e. function overriding occurs.

However, if we create a pointer of the parent class (Person) that points to the address an object of
the child class, the function overriding doesn't occur. Let's see an example,

#include <iostream>
using namespace std;
class Person {
public:
void display_info() {
cout << "I am a person." << endl;
}
};
class Student : public Person {
public:
void display_info() {

cout << "I am a student." << endl;
}
};
int main() {
Student student1;
// create Person pointer
// point to Student object
Person* ptr = &student1;
ptr->display_info();
return 0;
}
// Output: I am a person.

Notice the code,

Person* ptr = &student1;

Here, we are creating a pointer of the base class that points to the address of an object of the child
class. So, when we call the display_info() function using this pointer, the function of the child class
should be invoked.

Instead, the function of the parent class is invoked, so we get the output I am a person..

We can solve this problem using the concept of virtual functions.

Reminder: The -> operator is used to access class members using a pointer. On the other hand,
the . operator is used to access members using objects.

C++ Virtual Functions
A virtual function is a member function of the parent class that should always be overridden by the
child class. We use the virtual keyword to declare virtual functions in C++.

Let's see an example.

#include <iostream>
using namespace std;
class Person {
public:
virtual void display_info() {
cout << "I am a person." << endl;
}
};
class Student : public Person {
public:
void display_info() {
cout << "I am a student." << endl;
}
};
int main() {
Student student1;
// create Person pointer that points to student object

Person* ptr = &student1;
ptr->display_info();
return 0;
}
// Output: I am a student.

This program is similar to the earlier example. The only difference is that we have changed the
normal function to a virtual function in the parent class.

This time, the Person type pointer to student is invoking the function of the child class, thus
overriding the function in the parent class.

As you can see, the use of virtual functions allows us to achieve function overriding using pointers
as well.

Pure Virtual Functions
So far, we have been creating functions like this:

void display_info() {
 cout << "I am a person" << endl;
}

Here, the code inside the curly braces {} is the body of the function.

In C++, we can also create functions that don't have a body. These types of functions
are known as pure virtual functions.

Similar to virtual functions, the child class must override these functions, and we use
the virtual keyword to create them. For example,

virtual void display_info() = 0;

Here, display_info() is a pure virtual function and you can see the function doesn't
have a body. Instead, it's replaced by = 0.

You might be wondering what is the use of functions if they don't have any code inside
them.

Well, there are some situations that require us to use pure virtual functions. Before
learning about these cases, let's first talk about abstract classes.

Abstract Class
Normally, when we create a class, we can create objects from the class. For example,

class Animal {
// class body
};
// object of Animal
Animal obj;

Here, we are creating an object named obj of the Animal class.

In C++, we can also create abstract classes which contain pure virtual functions. For
example,

// abstract class
class Polygon {
public:
// pure virtual function
virtual void get_area() = 0;
};

Here, Polygon is an abstract class because it includes the pure virtual
function get_area().

Unlike regular classes, we cannot create objects of an abstract class. Let's see what
happens when we try to create an object of an abstract class.

#include <iostream>
using namespace std;
// abstract class
class Polygon {
public:
// pure virtual function
virtual void get_area() = 0;
};
int main() {
// create object of Polygon
Polygon obj;
return 0;
}

When we run this code, we will get an error.

error: cannot declare variable 'obj' to be of abstract type 'Polygon'

 14 | Polygon obj;
 | ^~~

This is because we are trying to create an object of the abstract class, which is not
possible in C++.

Functions Inside the Abstract Class
Just like regular classes, an abstract class can have both regular functions and pure virtual
functions. For example,

// abstract class
class Polygon {
 public:

 // regular function
 void print_sides() {
 cout << "Print sides of Polygon." << endl;
 }

 // pure virtual function
 virtual void get_area() = 0;
};

In the above example, we have created an abstract class that has

 a regular function named print_sides()
 a pure virtual function named get_area()

How to Use Abstract Classes and Pure Virtual Functions?

If we cannot create objects of an abstract class, then you might be wondering how we can access
the functions inside it.

The answer is that in C++, we must inherit the abstract class to use it. For example,

// abstract class
class Polygon {
 public:

 // regular function
 void print_sides() {
 cout << "Print sides of Polygon." << endl;
 }

 // pure virtual function
 virtual void get_area() = 0;
};

class Rectangle: public Polygon {};

Here, the Rectangle class is inheriting the abstract class Polygon, hence it also inherits both the
regular and pure virtual functions.

Now, the subclass must provide the implementation of all pure virtual functions, otherwise the
subclass will be treated as an abstract class.

Once we provide the implementation of the pure virtual function, we can create objects of the
subclass and access the functions, which we will see next.

Example: Abstract Class

#include <iostream>
using namespace std;
// abstract class
class Polygon {
public:
// regular function
void print_sides() {
cout << "Print sides of Polygon." << endl;
}
// pure virtual function
virtual void get_area() = 0;
};
class Rectangle: public Polygon {
public:
// implementation of the pure virtual function
void get_area() {
cout << "Print the area of Rectangle." << endl;
}
};
int main() {
// create object of the child class
Rectangle rectangle1;
// access the regular function of Polygon
rectangle1.print_sides();
// access the implemented pure virtual function
rectangle1.get_area();
return 0;
}

Output

Print sides of Polygon.
Print the area of Rectangle.

In the above example, we have created the Rectangle class by inheriting the abstract class Polygon.

The Rectangle class now inherits both the regular and pure virtual functions, so we must provide
the implementation for the pure virtual function get_area().

We then used an object of Rectangle to access functions of the abstract class.

Why Abstract Classes?
Suppose there is a function that is common among multiple entities. For example, all
polygons have an area, and the function for calculating area can be shared among
different types of polygons (rectangle, triangle, etc.).

However, the process of calculating the area of each polygon is different from one
another. So, we cannot provide one implementation of calculating area that will work for
all the polygons.

Instead, we can create a function without any implementation and all the polygons will
provide their own implementation for the function.

For this, we use abstract classes with pure virtual functions and all the polygons
implementing the class will provide their own version of the pure virtual function.

Let's see an example.

Example: Practical Use of Abstract Classes

#include <iostream>
using namespace std;
// abstract class
class Polygon {
public:
// pure virtual function
virtual double get_area() = 0;
};
class Rectangle: public Polygon {
public:
double length;
double breadth;
// initialize length and breadth
Rectangle(double len, double bread) : length(len), breadth(bread) {}
// implementation of the pure virtual function
double get_area() {
double area = length * breadth;
return area;
}
};
int main() {
// create object of the child class
Rectangle rectangle1(12.5, 8);
// access the implemented pure virtual function
double area = rectangle1.get_area();
cout << "Area of Rectangle: " << area;
return 0;
}

Output

Area of Rectangle: 100

In the above example, we have created an abstract class with a single pure virtual function
named get_area().

Here, the Rectangle class provides its own implementation of get_area() to compute the area of the
rectangle.

Similarly, we can also inherit a Triangle class from Polygon which will provide its own
implementation of the pure virtual function.

class Triangle : public Polygon {

public:
double base;
double height;
Triangle(double b, double h) : base(b), height(h) {}
double get_area() {
double area = 0.5 * base * height;
return area;
}
};

We can then use an object of the Triangle class to compute the area.

Go ahead and complete the code to compute the area of both rectangle and triangle.

Polymorphism

Introduction to Polymorphism
Polymorphism is another important concept in object-oriented programming. It simply
means more than one form: the same entity (function or operator) can perform different
operations in different scenarios.

Remember the working of the + operator? It can be used to perform numeric addition as
well as string concatenation.

#include <iostream>
using namespace std;
int main() {
// use + to add two numbers
int result = 4 + 8;
cout << "Sum: " << result << endl;
string str1 = "Hello ";
string str2 = "World";
// use + to join two strings
string new_string = str1 + str2;
cout << new_string;
return 0;
}

Output

Sum: 12
Hello World

In the above example, we have used the same + operator to perform two different
tasks:

 4 + 8 - adds two numbers
 str1 + str2 - joins two strings

Here, the + operator has two different forms. Thus, it is an example of C++
Polymorphism.

Polymorphism With Function Overriding
In function overriding, the same function is present in both the base class and the
derived class.

// base class
class Animal {
public:
// make_sound() in the base class
void make_sound() {
cout << "Making animal sound" << endl;
}
};
// derived class
class Dog: public Animal {
public:
// make_sound() in the base class
void make_sound() {
cout << "Woof Woof" << endl;
}
};

In this case, we can independently access functions of the base class and derived
class by using their respective objects. For example,

#include <iostream>
using namespace std;
class Animal {
public:
// make_sound() function of base class
void make_sound() {
cout << "Making animal sound" << endl;
}
};
class Dog: public Animal {
public:
// make_sound() function of derived class
void make_sound() {
cout << "Woof Woof" << endl;
}
};
int main() {
// access function of derived class
Dog dog1;
dog1.make_sound();
// access function of base class
Animal animal1;
animal1.make_sound();
return 0;
}

Output

Woof Woof
Making animal sound

As you can see, we are able to use the same function make_sound() to perform two
different tasks.

Hence, we can say function overriding helps us achieve polymorphism in C++.

Note: Because Polymorphism includes function overriding, the related concepts of
virtual functions and pure virtual functions are also examples of Polymorphism.

Polymorphism With Function Overloading
Let's understand function overloading first.

In C++, two or more functions can have the same name if they have different
numbers/types of parameters. Let's see an example.

// function with no parameter
void display() {
 ...
}

// function with an integer parameter
void display(int number) {
 ...
}

// function with string parameter
void display(string name) {
 ...
}

// function with two parameters
void display(string name, int age) {
 ...
}

Here, we have created 4 functions with the same name display(), but different
parameters. These functions are called overloaded functions and the process is
called function overloading.

From the above explanation, it's clear that there are two ways to perform function
overloading.

 With different numbers of parameters
 With different types of parameters

Let's see an example of both.

Overloading With Different Number of Parameters

#include <iostream>
using namespace std;
class Addition {
public:
// function with 2 parameters
void add_numbers (int num1, int num2) {
int sum = num1 + num2;
cout << "Sum of 2 digits: " << sum << endl;
}
// function with 3 parameters
void add_numbers(int num1, int num2, int num3) {
int sum = num1 + num2 + num3;
cout << "Sum of 3 digits: " << sum << endl;
}
};
int main() {
// create an object of Addition
Addition addition;
// call function with 2 arguments
addition.add_numbers(3, 5);
// call function with 3 arguments
addition.add_numbers(7, 9, 4);
return 0;
}

Output

Sum of 2 digits: 8
Sum of 3 digits: 20

In the above example, we have overloaded the add_numbers() function
with 2 and 3 parameters.

Here, based on the number of arguments passed during the function call, the
corresponding function is executed.

You can see we are able to use the same function add_numbers() for two different tasks.
Hence, this helps in achieving Polymorphism.

Figure: C++ Function Overloading

Overloading With Different Types of Parameters
Now, let's try function overloading with different parameter types. For example,

#include <iostream>
using namespace std;
class Addition {
public:
// function with integer parameters
int add_numbers (int number1, int number2) {
int sum = number1 + number2;
return sum;;
}
// function with double parameters
double add_numbers(double number1, double number2) {
double sum = number1 + number2;
return sum;
}
};
int main() {

// create an object of Addition
Addition addition;
// call function with integer arguments
int sum1 = addition.add_numbers(12, 9);
cout << "Sum of integers: " << sum1 << endl;
// call function with double arguments
double sum2 = addition.add_numbers(32.9, 43.7);
cout << "Sum of doubles: " << sum2 << endl;
return 0;
}

Output

Sum of integers: 21
Sum of doubles: 76.6

Here, we have overloaded the add_numbers() function with int and double parameters.
Now, depending on the types of arguments passed during the function call, the
corresponding function is executed.

As you can see, this example also uses the same function for two different purposes.
Hence, this example is also an implementation of polymorphism.

Important! Function overloading is only associated with parameters, not their return
types. Overloaded functions may have the same or different return types, as long as
their parameters are different.

This is Not Function Overloading
Suppose we have two functions with the same name like this:

class Addition {
 public:

 // function with the void return type
 void add(int a, int b) {
 cout << a + b;
 }

 // function with the int return type
 int add(int a, int b) {
 return a + b;
 }
};

Here, we have two functions with the same name but different return types.

As mentioned earlier, function overloading is only associated with the number and type
of parameters, not return types. This is not function overloading because both functions
have the same parameters.

Hence, the above code will generate an error.

Remember: For function overloading, functions should have the same name and
different parameters (different number of parameters, different types of parameters, or
both).

Common Mistakes
Always remember that if we include multiple parameters of different types, we need to supply
arguments in the same order while calling the function. Otherwise, it will either throw an error or
result in a wrong output.

#include <iostream>
using namespace std;
class Multiplication {
public:
void multiply(int num1, int num2) {
int result = num1 * num2;
cout << result << endl;
}
void multiply(double num1, int num2, int num3) {
double result = num1 * num2 * num3;
cout << result << endl;
}
};
int main() {
// create an object of Addition
Multiplication product;
// supplying arguments in the wrong order
product.multiply (5, 6.5, 8);
return 0;
}

Expected Output

260

Actual Output

240

Here, we have overloaded the multiply() function: one function takes two integer parameters
while the other takes a double parameter followed by two integer parameters.

However, we have called the second function by supplying the double argument after an integer
argument.

// incorrect function call
// result = 5 * 6 * 8 = 240
product (5, 6.5, 8);
// correct function call
// result = 6.5 * 5 * 8 = 260
product (6.5, 5, 8);

As a result, we get the output 240 (5 * 6 * 8) instead of 260 (6.5 * 5 * 8).

Function Overloading Without Class
It's also possible to overload regular C++ functions without using classes. For example,

#include <iostream>
using namespace std;
// function with two parameters
void multiply(int number1, int number2) {
int result = number1 * number2;
cout << "Product of 2 numbers: " << result << endl;
}
// function with three parameters
void multiply(int number1, int number2, int number3) {
double result = number1 * number2 * number3;
cout << "Product of 3 numbers: " << result << endl;
}
int main() {
// call function with two arguments
multiply(5, 8);
// call function with three arguments
multiply(3, 6, 10);
return 0;
}

Output

Product of 2 numbers: 40
Product of 3 numbers: 180

As you can see, we have successfully implemented polymorphism without using a class.

However, this does not fall under OOP Polymorphism because we haven't used classes and
objects.

Encapsulation

Encapsulation
Encapsulation is another key feature of object-oriented programming. It means
bundling variables and functions together inside a class.

Let's understand this with the help of an example.

Suppose we need to compute the area of a rectangle. We know that to compute the
area, we need two data (variables) - length and breadth - and a function
- calculate_area().

Hence, we can bundle these variables and the function together inside a single class.

class Rectangle {
 public:

 // variables to store data
 int length;
 int breadth;

 // function to calculate area
 int calculate_area() {
 int area = length * breadth;
 return area;
 }
};

This is an example of encapsulation.

Figure: C++ Encapsulation

With this, we can now keep related variables and functions together, making our code
clean and easy to understand.

Example: C++ Encapsulation

#include<iostream>
using namespace std;
class Rectangle {
public:
// variables to store data
int length;
int breadth;
// constructor to initialize variables
Rectangle(int l, int b): length(l), breadth(b) {}
// function to calculate area
int calculate_area() {
int area = length * breadth;
return area;
}
};
int main() {
// intialize value of length and breadth
Rectangle rect(12, 9);
// calculate the area
cout << "Area: " << rect.calculate_area();
return 0;
}
// Output:
// Area: 108

In the above example, we have created the Rectangle class to

 use the length and breadth variables to store data of a rectangle,
 calculate the area of the rectangle using the calculate_area() function.

Inside this class, we have used a constructor to initialize the value of length and breadth.

Rectangle(int l, int b): length(l), breadth(b) {}

Once the variables are initialized with the relevant data, we use the function below to calculate the
area:

int calculate_area() {
int area = length * breadth;
return area;
}

Here, you can see the calculate_area() function uses length and breadth variables to compute the
area of the rectangle. Both these variables are also present inside the same class.

This is what encapsulation is all about: bundling the related data and function together.

Data Hiding in C++
Data hiding prevents the access of variables and functions of a class from other
classes. It is one of the most important benefits of encapsulation.

In our previous example, we can make both length and breadth variables private.

class Rectangle {
private:
// variables to store data of rectangle
int length;
int breadth;
};

Now these variables cannot be accessed from outside the class. In order to access
these variables, we need to use getter and setter functions.

#include <iostream>
using namespace std;
class Rectangle {
private:
// private variables to store data
// the data in these variables is hidden from outside the class
int length;
int breadth;
public:
// function to initialize value of length
void set_length(int len) {
length = len;
}
// function to initialize value of breadth
void set_breadth(int br) {
breadth = br;
}
// function to calculate area
int calculate_area() {
int area = length * breadth;
return area;
}
};
int main() {
// create object
Rectangle rect;
// initialize the value of length and breadth
rect.set_length(12);
rect.set_breadth(9);
// calculate the area
cout << "Area: " << rect.calculate_area();
return 0;
}

In the above example, we have used the setter functions:

 set_length() - to initialize the value of the private variable length
 set_breadth() - to initialize the value of the private variable breadth

Notes:

 We are not trying to access length and breadth variables, hence we haven't
included the getter functions in our program.

 We can also initialize these variables using a constructor. But it's preferable to
use setter functions to initialize private variables.

Here, other classes won't be able to directly access length and breadth. By making
these variables private, we have restricted unauthorized access from outside the class.

This is an example of Data Hiding.

Why Encapsulation?
With encapsulation, we can control what types of data our variables will store.

Suppose we want to get an age input for the Person class. Initially, we can mark age as private so
that no one can directly modify it from outside the class.

class Person {
private:
int age;
};

We know the only way to initialize the variable of age is by using a setter function.

Inside the function, instead of directly assigning the value, we can use a condition that checks
whether age is greater than 0 and less than 100.

class Person {
private:
int age;
public:
// setter function
void set_age(int person_age) {
if (person_age > 0 && person_age < 100) {
age = person_age;
}
}
};

With this, we are now able to control what value the age variable stores.

Let's complete the program.

#include <iostream>
using namespace std;
class Person {
private:
int age;
public:
// setter function
void set_age(int person_age) {
if (person_age > 0 && person_age < 100) {
age = person_age;
}
else {
cout << "Invalid age" << endl;
// terminate the program
exit(0);
}
}
// getter function
int get_age() {
return age;
}
};
int main() {
// create object of Person
Person person;
int age;
// get input value for age
cout << "Enter your age: ";
cin >> age;
// initialize the value of age
person.set_age(age);
// get value of age
cout << "Age: " << person.get_age();
return 0;
}

Sample Output 1

Enter your age: 25
Age: 25

Sample Output 2

Enter your age: 0
Invalid age

Here, the program only assigns the value to age if it is greater than 0 and less than 100. Otherwise,
the program will be terminated after informing the user that the age input is invalid.

This way, with the help of encapsulation, we can control our program by not letting users enter an
invalid age.

Why Data Hiding?
Not all data inside a class are meant to be universally accessible. It is very important to hide some
of the data from other functions and classes in our program.

For instance, consider a class called Bank_Account that allows the program to store the bank details
of different people. Naturally, many of the details are confidential and should only be accessible to
a select few.

But if our program gives public access to these crucial details, then anyone using our program can
tamper with sensitive information.

Figure: Public data can be accessed by unauthorized parties

To prevent this, object-oriented programming languages such as C++ have integrated a very
crucial feature into their system: data hiding.

Data hiding refers to restricting access to data members of a class. As we have discussed earlier,
this is to prevent other functions and classes from tampering with the class data.

That's why it is important to declare sensitive variables private so that unauthorized users don't
get access to these variables.

Revise OOP (Advanced)

Major OOP Concepts
C++ is an object-oriented programming language, and so far, we have learned about the major
concepts of OOP.

 Inheritance
 Abstraction (pure virtual functions and abstract classes)
 Polymorphism
 Encapsulation

We have already covered everything about inheritance in our last chapter.

Now, let's revise the other 3 with the help of the following examples:

 Implement brakes in Motor_Bike class
 Overloading the Payment Process of eCommerce
 Compute the Area of Circle Using Encapsulation

Let's get started.

Implement Brakes in Motor_Bike Class
In this example, we will look into the practical implementation of abstraction using motorbike
brakes.

Thought Process

We know that the purpose of a brake is to stop the motorbike. However, the working of brakes is
different for different types of bikes.

So, instead of creating separate functions for each type of motor bike, we can simply create a pure
virtual function brake() to allow for different implementations.

Now, all the other types of bikes will provide a separate implementation of brakes that suits their
needs. However, the actual working of the brake will remain the same (to stop the bike).

Source Code

#include <iostream>

using namespace std;

// abstract class

class Motor_Bike {

public:

// pure virtual function

virtual void brake() = 0;

};

class Sports_Bike: public Motor_Bike {

public:

// provide an implementation of brake

void brake() {

cout << "Stopping the Sports Bike." << endl;

}

};

class Mountain_Bike: public Motor_Bike {

public:

// provide an implementation of brake

void brake() {

cout << "Stopping the Mountain Bike." << endl;

}

};

int main() {

Sports_Bike s1;

s1.brake();

Mountain_Bike m1;

m1.brake();

return 0;

}

Output

Stopping the Sports Bike.
Stopping the Mountain Bike.

In the above example, we have created an abstract class Motor_Bike with a pure virtual function
named brake().

Here, Sports_Bike and Mountain_Bike classes inherit Motor_Bike and provide an implementation for
the pure virtual function.

Overloading the Payment Function of eCommerce
In this example, we will implement the payment method for an eCommerce business.

Thought Process

We know that every eCommerce business has different payment methods like credit card
payment, PayPal payment, and many more.

Each payment method requires different information. For example, we will need a card number,
CVV, and expiry date to pay through a credit card. Similarly, to pay through PayPal, we need the
PayPal ID.

So let's implement this same logic and overload the payment function with different numbers of
parameters.

Source Code
#include <iostream>

using namespace std;

class Payment {

public:

// pay through credit card

void make_payment(string card_number, string cvv, string expiry_date) {

cout << "Payment Through Credit Card is Successful." << endl;

}

// pay through PayPal

void make_payment(string id) {

cout << "Payment Through PayPal is Successful." << endl;

}

};

int main() {

Payment pay;

// make the payment through credit card

pay.make_payment("4324 7651 3232 8723", "532", "12/029");

// make the payment through Paypal

pay.make_payment("8925832997");

return 0;

}

Output

Payment Through Credit Card is Successful.
Payment Through PayPal is Successful.

Here, we have implemented the behavior of polymorphism (through function overloading) in C++.

Note: For simplicity, we are directly providing the values for function arguments. It is good practice to get
input for these values.

Compute the Area of Circle Using Encapsulation
In this example, we will compute the area of a circle using the concepts of encapsulation. Here, we
will use the following formula.

Area of a circle = 3.14 * radius * radius

Thought Process

From the formula, we know that we need the radius to calculate the area. Here, we will be using
the private variable radius, so that it cannot be directly modified from outside of the class.

class Area {

private:

double radius;

};

We will then use the setter and getter functions to modify and access the value of radius from
outside.

public:

// setter function

void set_radius(double rad) {

// function body

}

double get_radius() {

// function body

}

However, inside the setter function, we will use an if condition to prevent radius from being
negative.

void set_radius(double rad) {

if (rad > 0) {

radius = rad;

}

else {

cout << "Error! Radius is negative" << endl;

}

}

Now, this code ensures that radius can't be negative.

Let's complete this program.

#include <iostream>

using namespace std;

class Area {

private:

double radius;

public:

// setter function

void set_radius(double rad) {

if (rad > 0) {

radius = rad;

}

else {

cout << "Error!! Radius is negative" << endl;

}

}

// getter function

double get_radius() {

return radius;

}

};

int main() {

// get input value for radius

double radius;

cout << "Enter the value of radius: ";

cin >> radius;

Area area;

// set value of radius

area.set_radius(radius);

// access the value of radius and compute the area

double circle_area = 3.14 * area.get_radius() * area.get_radius();

cout << "Area of circle: " << circle_area;

return 0;

}

Sample Output 1

Enter the value of radius: 12
Area of circle: 452.16

Sample Output 2

Enter the value of radius: -12

Error!! Radius is negative
Area of circle: 0

The program only assigns the input value to radius if it is not negative. Otherwise, the default
value of 0.0 will be assigned to radius.

This way, we can control the program by not letting users enter negative values.

C

Templates

Introduction to Templates
If you think back on how we use functions and classes, you will realize that we are
limited by the data type of the variables and arrays we define inside our function/class.
For instance, consider the following class and function:

class Sample_Class {
 public:
 int var1;
 double var2;
};

int sample_function (int num1, int num2) {
 int result = (num1 * num2 * 5) / 11;
 return result;
}

From just a glance at the code above, we can easily conclude that

 Sample_Class can only work with integer and double data, and
 sample_function() can only work with integer data.

But what if we could define classes and objects to work with almost any data type?

One option to achieve this is using overloading, but that would require us to define the
function multiple times. And we can't overload classes in C++.

What we want is to define the class or function only once, and then let that single
class/function work with all sorts of data types.

Fortunately, C++ has provided us with an incredibly useful tool to do just that: templates.
This is a powerful feature that allows us to write generic programs i.e. programs that
include codes that can work with any data type.

There are two ways we can implement templates:

 Function Templates
 Class Templates

Let's start with function templates.

Note: We can also create templates of structures i.e. struct. However, we will not learn
about them in this course. Instead, let's just say that struct templates are somewhat
similar to class templates, and leave it at that.

Function Templates
Function templates are generic functions that can work with multiple data types. For
example,

template <typename T>
T add(T num1, T num2) {
 return (num1 + num2);
}

Here, we have created a function template named add(). The template definition
consists of the following parts:

 template - keyword used to declare a function template
 typename - keyword that is part of the function template syntax
 T - template argument that represents the data type

Now we can use this function with any type of data.

1. Working with int data

// call function template with int data
add<int> (2, 3);

Here, the template argument T will be int and num1 and num2 will be 2 and 3 respectively.

2. Working with double data

// call function template with double data
add<double> (5.56, 9.34);

In this case, the template argument T will be double and num1 and num2 will
be 5.56 and 9.34 respectively.

Note: We can also omit the data type while calling a function template. For
example, add(2, 3) and add(5.56, 9.34). However, it is a good practice to include the
data type during the function call.

Example: Function Template

#include <iostream>
using namespace std;
template <typename T>
T add(T num1, T num2) {
return num1 + num2;
}
int main() {
// call function template with int data
int result1 = add<int>(2, 3); // call function template with double data
double result2 = add<double>(5.56, 9.34);

cout << "2 + 3 = " << result1 << endl;
cout << "5.56 + 9.34 = " << result2 << endl;
return 0;
}

Output

2 + 3 = 5
5.56 + 9.34 = 14.9

As you can see, we are able to use the same function to work with both the integer data
and double data.

Class Templates
Similar to functions, we can also create class templates to work with different types of
data. For example,

template <class T>
class Number {
 public:
 T var1;
 T var2;
};

Notice that we have used the keyword class instead of typename in the syntax above.
We can also use the keyword typename instead.

template <typename T>
class Number {...};

So don't get confused. We will be using class for all our examples.

Now, we can use this class to work with any type of data by creating objects with the
appropriate data type. For example,

// object that works with integer data
Number<int> integer_object;

// object that works with double data
Number<double> double_object;

Note: Unlike with function templates, we must supply the data type of the parameters
when creating objects of class templates.

// error: missing template arguments
Number integer_object;

Example: Class Templates

#include <iostream>
using namespace std;
// class template
template <class T>
class Multiplication {
public:
// variable of type T
T multiplier;
// constructor initializer list
Multiplication(T multi) : multiplier(multi) {}
// function that returns product of
// multiplier variable and the num argument
T multiply(T num) {
return num * multiplier;
}
};
int main() {
// create object with int data
Multiplication<int> num_int(3);
int result1 = num_int.multiply(9);
// create object with double data
Multiplication<double> num_double(5.7);
double result2 = num_double.multiply(13.2);
cout << "Product with int: " << result1 << endl;
cout << "Product with double: " << result2 << endl;
return 0;
}

Output

Product with int: 27
Product with double: 75.24

In this program, we have created a template class:

template <class T>
class Multiplication {
...
};

The class contains

 multiplier - a variable
 Multiplication() - constructor to initialize multiplier
 multiply() - function to calculate product of multiplier and its parameter num

Let's look at how this program works.

1. Working With int Data

Multiplication<int> num_int(3);

int result1 = num_int.multiply(9);

Here, we have created an object of Multiplication to work with int data. As you can
see from the code above:

 multiplier is 3
 the argument given to multiply() is 9 i.e. num == 3
 the return value of multiply() is 9 * 3 i.e. 27.

2. Working With double Data

Multiplication<double> num_double(5.7);
double result2 = num_double.multiply(13.2);

Here, we have created an object of Multiplication to work with double data. As you can
see from the code above:

 multiplier is 5.7
 the argument given to multiply() is 13.2 i.e. num == 13.2
 the return value of multiply() is 5.7 * 13.2 i.e. 75.24.

Why Templates?
1. Code Reusability

We can write code that will work with different types of data. For example,

int add(int num1, int num2) {
 return num + num2;
}

Here, the function only works if we pass int data to this. If we want to perform addition
of double values, we have to create another function.

However, with templates, we can use one function and use it with any type of data.

template <typename T>
T add(T num1, T num2) {
 return num1 + num2;
}

2. Type Checking

The template parameter, T, provides information about the type of data used in the
template code. For example,

Template_Class<string> obj("Hello");

Here, this object will only work with string data. Now, if we try to pass a value other
than string, we will get an error.

Constructor Overloading

Introduction
C++ allows us to have two or more functions with the same name if they have different parameters
(type and number). This process is known as function overloading. For example,

#include <iostream>

using namespace std;

class Multiplication {

public:

// function with 2 parameters

void multiply(int num1, int num2) {

int product = num1 * num2;

cout << "Product of 2 numbers: " << product << endl;

}

// function with 3 parameters

void multiply(int num1, int num2, int num3) {

int product = num1 * num2 * num3;

cout << "Product of 3 numbers: " << product << endl;

}

};

int main() {

Multiplication obj;

// call function with 3 arguments

obj.multiply(2, 8, 6);

// call function with 2 arguments

obj.multiply(4, 7);

return 0;

}

Output

Product of 3 numbers: 96
Product of 2 numbers: 28

In the above example, we have overloaded the multiply() function to work with different numbers
of parameters.

Constructor Overloading

Similarly, we can also overload constructors in C++ to perform different actions based on different
parameters.

But first let's revise the different types of constructor available in C++.

C++ Constructors
Basically, a constructor is like a member function of a class that has the same name as the class but
no return type. A constructor is automatically called when we create an object of the class. For
example,

#include <iostream>

using namespace std;

class Sample {

public:

// default constructor with no arguments

Sample() {

cout << "Object created!" << endl;

}

};

int main() {

// create an object of the Sample class

Sample sample1;

return 0;

}

// Output: Object created!

Here, Sample() is a constructor of the Sample class and is called automatically the moment we
create the sample1 object. It is a default constructor since it takes no arguments.

Parameterized Constructor

Constructors can also take parameters. For example,

#include <iostream>

using namespace std;

class Sample {

public:

// constructor with integer parameter

Sample (int num) {

cout << "Constructor Parameter: " << num << endl;

}

};

int main() {

// create object of Sample

// supply 9 as argument to its constructor

Sample sample(9);

return 0;

}

// Output:

// Constructor Parameter: 9

Constructor Overloading
Similar to function overloading, overloaded constructors have the same name (name of
the class) but different numbers or types of arguments.

Let's see an example.

#include <iostream>
using namespace std;
class Sample {
public:
// default constructor with no arguments
Sample() {
cout << "Default constructor!" << endl;
}
// parameterized constructor with an integer argument
Sample (int num) {
cout << "Second Constructor Parameter: " << num << endl;
}
// constructor with 2 parameters
Sample (int num1, double num2) {
cout << "Third Constructor Parameters: ";
cout << num1 << " and " << num2 << endl;
}
};
int main() {
// call the default constructor
Sample sample1;
// call the constructor with a single int argument
Sample sample2(9);
// call the constructor with two arguments

Sample sample3(9, 9.5);
return 0;
}

Output

Default constructor!

Second Constructor Parameter: 9
Third Constructor Parameters: 9 and 9.5

Here, we have overloaded 3 constructors in the Sample class:

 Sample() - a default constructor with no parameters
 Sample(int num) - a parameterized constructor with an integer parameter
 Sample(int num1, double num2) - a parameterized constructor with two parameters:

one integer and one double.

We can call the desired constructor by supplying the appropriate argument(s) when
creating objects of the class. The image below shows how:

Figure: C++ Constructor Overloading

Example: Constructor Overloading

#include <iostream>
using namespace std;
class Person {
private:
int age;
public:
// 1. Constructor with no arguments
Person() {
age = 20;
}
// 2. Constructor with an integer argument
Person(int a) {
age = a;
}
// getter function
int get_age() {
return age;
}
};
int main() {
// call default constructor
Person person1;
// call parameterized constructor
Person person2(45);
cout << "Person1 Age = " << person1.get_age() << endl;
cout << "Person2 Age = " << person2.get_age() << endl;
return 0;
}

Output

Person1 Age = 20
Person2 Age = 45

In this program, we have created a class Person that has a single variable age.

We have also defined two constructors:

1. Person() Constructor

 default constructor i.e. accepts no argument
 called while creating the object person1 because we haven't passed any argument
 initializes age to 20

2. Person(int a) Constructor

 parameterized constructor with parameter a
 called while creating the object person2 because we have passed 45 as an

argument
 initializes age to parameter a i.e. 45

The function get_age() returns the value of age, and we use it to print
the age of person1 and person2.

Why Overload Constructors?
A lot of the times, we may want to initialize objects in different ways. Sometimes, we
may want an object to have default values for its member variables.

At other times, we may want to initialize the members with different values. This can
easily be achieved through constructor overloading.

So, with constructor overloading, we can make our classes and objects more dynamic
and flexible. It can also make our code shorter and look more clean.

Imagine having to assign custom values to different objects. Without constructor
overloading, we'd have to either assign the values using the . operator:

object1.variable1 = value1;
object1.variable2 = value2;

object2.variable1 = value3;
object2.variable2 = value4;

Or we'd have to rely on setter functions to assign those values:

object1.set_variable1(value1);
object1.set_variable2(value2);

object2.set_variable1(value3);
object2.set_variable2(value4);

With constructor overloading, we can condense these four lines of codes into two, while
also having the freedom to initialize an object with default values:

// objects with custom values
Sample_Class object1(value1, value2);
Sample_Class object2(value3, value4);

// objects with default values
Sample_Class object3, object4;

As you can see, this process is far less tedious and is much easier on the eyes. So it is
always a good idea to overload constructors if our program demands flexibility with its
classes.

C++ Static Keyword

static Keyword
So far, we have been using an object of the class to access variables and functions of a class. For
example,

#include <iostream>
using namespace std;
class Animal {
public:
void display() {
cout << "I am an animal." << endl;
}
};
int main() {
// object of the Animal class
Animal obj;
// access the function using the object
obj.display();
return 0;
}

Output

I am an animal.

Here, we have used the object obj of the Animal class to access the member function display().

However, there might be situations where we want to access variables and functions without
creating the object. For this,we can use the static keyword.

Let's see an example.

Example: static Keyword

#include <iostream>
using namespace std;
class Animal {
public:
// static function
static void display() {
cout << "I am an animal." << endl;
}
};
int main() {
// access the function using class
Animal::display();
return 0;
}
// Output: I am an animal.

Here, you can see that we are able to directly access the display() function using the class name
with the scope resolution operator ::.

Animal::display();

Notice that we haven't created an object for this purpose. This is possible because we have
declared the function as static.

Static Member Variables
Unlike static functions, static member variables are declared inside the class and defined outside
the class. For example,

class Student {

public:

// static variable declaration

static int subject_code;

};

// static variable definition

int Student::subject_code = 13;

In the above example, we have created the static variable subject_code.

Here, you can see we have declared the static variable inside the class; however, we have
provided its definition outside the class.

Access static Variables

Like with static functions, we can use the class name with the scope resolution operator :: to
access static variables. For example,

#include <iostream>

using namespace std;

class Student {

public:

// static variable declaration

static int subject_code;

};

// static variable definition and initialization

int Student::subject_code = 13;

int main() {

// access static variable

cout << Student::subject_code;

return 0;

}

// Output: 13

You can see that we have successfully accessed the static variable without creating an object of
the class.

Change static Variable
We can also change the value of static variables once it's defined. For example,

#include <iostream>
using namespace std;
class Student {
public:
// static variable declaration
static int subject_code;
static string subject;
};
// static variable definition and initialization
int Student::subject_code = 13;
// static variable definition
string Student::subject;
int main() {
// access static variable
cout << "Initial subject_code: " << Student::subject_code << endl;
// change the subject_code variable
Student::subject_code = 15;
cout << "Final subject_code: " << Student::subject_code << endl;
// initialize the subject variable
Student::subject = "Physics";
// print the subject variable
cout << "Subject: " << Student::subject;
return 0;
}

Output

Initial subject_code: 13

Final subject_code: 15
Subject: Physics

In this program, we have created two static variables - subject_code and subject - inside
the Student class.

Notice how we have defined the static variables outside the class:

// static variable definition and initialization
int Student::subject_code = 13;
// static variable definition

string Student::subject;

Here, we have initialized subject_code to 13 but we have not initialized subject. This is because we
can change and also initialize variables later once they've been defined.

// inside the main() function
// change the subject_code variable
Student::subject_code = 15;
// initialize the subject variable
Student::subject = "Physics";

The above code:

 changes the value of subject_code to 15
 initializes subject to "Physics"

Why static?
While implementing OOP, we may be faced with situations where all the objects of a class need to
share common data. In such cases, we store such data in static variables.

When we declare a static variable, all objects of the class share the same static variable. The
static variables and functions belong to the class (rather than objects). And we don't need to
create objects of the class to access the static variables and functions.

#include <iostream>
using namespace std;
class Company {
public:
static string name;
};
// static variable definition
string Company::name;
int main() {
Company::name = "Programiz";
cout << "Name: " << Company::name;
return 0;
}

Figure: Working of static variables

Here, the static variable name is common to all objects of the class Company.

However, when we declare a non-static variable, all objects will have separate copies of the
variable.

#include <iostream>
using namespace std;
class Company {
public:
string name;
};
int main() {
Company object1;
Company object2;
object1.name = "Programiz";
object2.name = "Programiz PRO";
cout << "Name for object1: " << object1.name << endl;
cout << "Name for object2: " << object2.name;
return 0;
}

Figure: Working of non-static variables

Here, both object1 and object2 will have separate copies of the variable name. And they are
different from each other.

Example: Practical Use of static
In this example, we will get employee details of a company using static and non-static members.

Thought Process

In this program, we will use OOP to get the names of the employees of a single company. This
means that

 the name of the company will be the same for all employees,
 the name of each employee will be different.

Thus, when we create the Employee class, we can simply associate the company_name variable with
the class instead of associating it with individual objects. This means that we need to
declare company_name as static.

On the other hand, the employee_name variable will be non-static because each employee has a
different name. Thus, each object will have its own copy of employee_name.

In main(), we will initialize the static variable. Then, we will create two Employee objects, initialize
their employee_name variables, and then print all the static and non-static members of the objects.

Source Code
#include <iostream>

using namespace std;

class Employee {

public:

// static variable

static string company_name;

// non-static variable

string employee_name;

};

// define and initialize static variable

string Employee::company_name = "Microsoft";

int main() {

// create Employee objects

Employee employee1, employee2;

// get user input for employee_name of the objects

cout << "Enter Employee1 Name: ";

getline(cin, employee1.employee_name);

cout << "Enter Employee2 Name: ";

getline(cin, employee2.employee_name);

// print the variables

cout << "--" << endl;

cout << "Company Name: " << Employee::company_name << endl;

cout << "Employee1 Name: " << employee1.employee_name << endl;

cout << "Employee2 Name: " << employee2.employee_name;

return 0;

}

Output

Enter Employee1 Name: Chris Rock

Enter Employee2 Name: Will Smith

--

Company Name: Microsoft

Employee1 Name: Chris Rock
Employee2 Name: Will Smith

As you can see, company_name is static, while employee_name is not. So, we must define and
initialize company_name outside the class.

// define static variable outside the class

string Employee::company_name = "Microsoft";

In main(), we have created two objects: employee1 and employee2. We then took user input for
the employee_name variables of these objects. Finally, we printed both the static and non-static
members for these objects.

Static Functions and Non-Static Variables
In the previous challenge, we printed a static variable inside a static function. Now, let's see what
happens if we try to print a non-static variable inside a static function.

#include <iostream>
using namespace std;
class Company {
public:
// non-static variable
string name = "Programiz";
// create a static function
static void print_name() {
// print non static variable
cout << name;
}
};
int main() {
// call the static function
Company::print_name();
return 0;
}

Output

error: invalid use of member 'Company::name' in static member function
 13 | cout << name;

As you can see, we got an error message from the C++ compiler. The compiler tells us that we
cannot use non-static variables inside a static function.

So, if we are to make our program work, we'll have to either declare:

 both name and print_name() as static, or
 both name and print_name() as non-static, or
 name as static and print_name() as non-static

Tip: Try rewriting this program using all 3 of the above options and compare the results.

Next, we'll see what happens when we try to access static members using objects.

Note: Non-static functions can use both static and non-static variables.

Static Members and Objects
So far, we have accessed static members using the class name. But we can also access static
members using objects. For example,

#include <iostream>
using namespace std;
class Square {
public:
static int length;
};
int Square::length = 5;
int main() {
// create Square objects
Square square1, square2;
cout << "Initially," << endl;
// print static variable using the objects
cout << "square 1 length = " << square1.length << endl;
cout << "square 2 length = " << square2.length << endl;
// change length using square1
square1.length = 4;
cout << "\nAfter changing square1 length," << endl;
cout << "square 1 length = " << square1.length << endl;
cout << "square 2 length = " << square2.length << endl;
// change length using square2
square2.length = 7;
cout << "\nAfter changing square2 length," << endl;
cout << "square 1 length = " << square1.length << endl;
cout << "square 2 length = " << square2.length;
return 0;
}

Run Code >>

Output

Initially,

square 1 length = 5

square 2 length = 5

After changing square1 length,

square 1 length = 4

square 2 length = 4

After changing square2 length,

square 1 length = 7
square 2 length = 7

In this program, we have created two objects square1 and square2 from the Square class. Then, we
used these objects to access the static variable length.

Here, we are able to access static variables using objects and both objects give the same value
of length.

Also, changing the length using one object also changes the length of the other object. This is
because static members are common to all objects, something you already know very well by now.

However, we strongly advise you to not use objects to access static members.

Revision: static Keyword
Let's revise what we have learned in this lesson.

1. static functions

We can access static functions using the class name and the :: operator. For example,

#include <iostream>
using namespace std;
class Square {
public:
static void find_area(int length, int breadth) {
int square = length * breadth;
cout << "Square: " << square;
}
};
int main() {
int length = 12;
int breadth = 8;
// access the static function
Square::find_area(length, breadth);
return 0;
}
// Output: Square: 96

2. static Variables

Unlike static functions, a static variable is declared inside the class and defined outside the class.
For example,

#include <iostream>
using namespace std;
class Company {
public:
// declare a static variable

static string name;
};
// define the static variable
string Company::name = "Programiz";
int main() {
// access the static variable
cout << "Company name: " << Company::name;
return 0;
}
// Output: Company name: Programiz

3. Features of Static and Non-Static Members

 Static class members are associated with the class, so all objects share the same static
members.

 Non-static class members are associated with objects, so each object will have its own
copy of the non-static member.

 We use the static keyword to declare static members.

Protected Access Modifier

Introduction
Previously, we learned about the public and private access modifiers in the OOP (Basics) chapter.
Let's revise what these access modifiers do:

 public members - accessible from outside the class
 private members - not accessible from outside the class

In this lesson, we'll learn about the protected access modifier.

C++ Protected Members

Similar to public and private, we use the protected keyword to declare protected class members in
C++. For example,

class Person {

protected:

int id;

public:

string name;

};

Here,

 id is protected
 name is public

Once we declare a variable/function protected, it can be only accessed from that class and its
derived classes. If we try to access it from somewhere else, we will get an error. For example,

#include <iostream>

using namespace std;

class Person {

protected:

int id;

public:

string name;

};

int main() {

// create an object of Person

Person person;

// access the public variable

person.name = "Jon Snow";

cout << "Name: " << person.name << endl;

// error: protected members cannot be accessed

person.id = 101;

cout << "ID: " << person.id;

return 0;

}

When we run this code, we will get an error:

error: 'int Person::id' is protected within this context

22 | person.id = 101;

This error arises because we are trying to access the protected variable id from the main() function
(outside the Person class).

Figure: protected Access Modifier

Access Protected Members
Now let's see how we can access protected class members.

#include <iostream>
using namespace std;
class Person {
protected:
int id = 101;
public:
string name;
};
class Student : public Person {
public:
void access_protected() {
// access protected variable
cout << "ID: " << id << endl;
}
};
int main() {
// create an object of Student
Student student;
// access the public variable of the parent class
student.name = "Jon Snow";
cout << "Name: " << student.name << endl;
// call the access_protected() function
student.access_protected();
return 0;
}

Output

Name: Jon Snow
ID: 101

In the above example, we are accessing the protected variable inside the subclass Student.

void access_protected() {
cout << "ID: " << id;
}

This is possible because protected variables can only be accessed by the same class or its
subclasses.

Figure: Protected Access Modifier

In order to access protected members outside the class and its subclasses, we must use public
getter and setter functions (either inside the base class or inside the derived class) . Let's see how.

Getter/Setter With protected Modifier
Similar to private variables, we can also access protected members using public getter
and setter functions. For example,

#include <iostream>
using namespace std;
class Person {
protected:
int id;
public:
string name;
// setter function

void set_id(int num) {
id = num;
}
// getter function
int get_id() {
return id;
}
};
int main() {
// create an object of Person
Person person;
// access the public variable
person.name = "Jon Snow";
cout << "Name: " << person.name << endl;
// access the protected variable using getter and setter
person.set_id(101);
cout << "ID: " << person.get_id() << endl;
return 0;
}

Output

Name: Jon Snow
ID: 101

In this program, we have created public setter and getter functions in the Person class.
This allows us to access the protected variable id from main().

Inheritance Access Control

Revise Inheritance
We've already learned about inheritance in C++. Here's how we've been implementing inheritance
so far,

class Person {
 // statements
};

class Student: public Person {
 // statements
};

Here, the Student class is derived from the Person class. As a result,

 Student can access all the non-private members of Person,
 Person cannot access the members of Student.

Notice the keyword public that is used during inheritance. This indicates that we are
performing public inheritance.

Based on the access modifiers (public, private, and protected), we can perform inheritance in 3
different modes:

 Public Inheritance
 Protected Inheritance
 Private Inheritance

Let's start with public inheritance in C++.

Tip: If you are still confused about public and private, then you ought to revise the OOP
(Basics) chapter before proceeding further. And if you're still confused about protected, please
revisit the previous lesson: protected Access Modifier.

C++ Public Inheritance
In C++ public inheritance,

 public members of the base class are inherited as public in the derived class
 protected members of the base class remain protected in the derived class
 private members of the base class are inaccessible to the derived class

Suppose we have the following classes:

class Person {
 private:
 int id;

 protected:
 int marks;

 public:
 string name;
};
class Student: public Person {...};

int main() {...}

Here,

 id is private, so it cannot be accessed by Student and main()
 marks is protected, so it can be accessed by Student but not by main()
 name is public, so it can be accessed by both Student and main()

Now let's complete the above example.

Example: C++ Public Inheritance

#include <iostream>
using namespace std;
class Person {
private:
int id;
protected:
int marks;
public:
string name;

};
class Student: public Person {};
int main() {
Student student;
// valid code because name is public
student.name = "Tom Araya";
// error: marks is protected and cannot be accessed
student.marks = 97;
// error: id is private and cannot be accessed
student.id = 101;
return 0;
}

In the above example, we have created an object named student of the child class. We have then
used this object to access the public (name), protected (marks), and private (id) variables of Person.

However, when we run this code, we will get an error

// error: marks is protected and cannot be accessed
student.marks = 97;
// error: id is private and cannot be accessed
student.id = 101;

This is because during public inheritance, the child class inherits variables from the parent class
the way they were originally defined. Meaning

 public variable name will be inherited as public in Student
 protected variable marks will be inherited as protected, and
 private variable id will be inherited as private.

And because of the accessibility (shown in the following table), we get an error.

Accessibility
Private
Members

Protected
Members

Public
Members

Base Class Yes Yes Yes

Derived
Class

No Yes Yes

We have already discussed how to access the private and protected variables from outside:

 private variables - use public getter and setter functions
 protected variables - access inside the subclass or use public getter and setter functions

We highly recommend you use both of this process and try to solve the issue in the above
example.

If you're still not confident about accessing private and protected members, then we suggest you
revisit the following before proceeding further:

 Chapter 4: Inheritance
 Lesson: protected Access Modifier

C++ Protected Inheritance
Now that we've learned about public inheritance, it's time to shift our attention
to protected inheritance.

In C++ protected inheritance,

 public members of the base class are inherited as protected in the derived class
 protected members of the base class remain protected in the derived class
 private members of the base class are inaccessible to the derived class

Suppose we have the following classes:

class Person {
 private:
 int id;

 protected:
 int marks;

 public:
 string name;
};
class Student: protected Person {...};

int main() {...}

Here,

 id is private, so it cannot be accessed by Student and main()
 marks is inherited as protected, so it can be accessed by Student but not by main()
 name is public in Person but inherited by Student as protected, so it can be

accessed by Student but not by main()

Let's look at this with an example.

Example: C++ Protected Inheritance
In our Public Inheritance section, we learned that we need to define getter and setter
functions in the base class to access its private and protected members.

Now, let's apply the same concept in protected inheritance and see what happens.

#include <iostream>
using namespace std;
class Person {
private:
int id;
protected:
int marks;
public:
string name;
// setter function for private variable
void set_id(int num) {

id = num;
}
// getter function for private variable
int get_id() {
return id;
}
// setter function for protected variable
void set_marks(int num) {
marks = num;
}
// getter function for protected variable
int get_marks() {
return marks;
}
};
class Student : protected Person {};
int main() {
Student student;
// Error: name is inherited as protected
student.name = "Tom Araya";
// Error: set_marks() is inherited as protected
student.set_marks(97);
// Error: set_id() is inherited as protected
student.set_id(101);
// Error: name is inherited as protected
cout << "Name: " << student.name << endl;
// Error: get_id() and get_marks() are inherited as protected
cout << "Id: " << student.get_id() << endl;
cout << "Marks: " << student.get_marks();
return 0;
}

In the above example, we have inherited the Student class from the Person class
in protected mode.

In main(), we then attempted to access the public members of the Person class using an
object of the Student class.

However, we got multiple errors because the public members of the Person class are
inherited as protected in the Student class.

To get a better idea, here's how all the class members of Person are inherited:

 public variable name will be inherited as protected in Student,
 public functions set_id(), get_id(), set_marks(), and get_marks() will be inherited

as protected,
 protected variable marks will be inherited as protected, and
 private variable id will be inherited as private.

And because of the accessibility (shown in the following table), we get an error.

Accessibility
Private
Members

Protected
Members

Public Members

Base Class Yes Yes Yes

Derived
Class

No Yes
Yes (inherited as
protected variables)

This means that we cannot access any member of the Person class with the way we've
written our program.

But there is a solution: we can access marks and name if we define their getter and setter
functions inside the child class Student instead of the parent class Person.

That way, the public getter and setter functions inside Student will remain accessible to
the main() function, since they are public in Student.

On the other hand, the private variable id cannot be accessed directly by
the Student class. There's a roundabout method to do so, but we will not be learning
about that right now.

Instead, we'll focus our efforts on accessing only marks and name. So, let's implement the
strategy we just discussed in our next challenge.

C++ Private Inheritance
In C++ private inheritance,

 public members of the base class are inherited as private in the derived class
 protected members of the base class are inherited as private in the derived class
 private members of the base class are inaccessible to the derived class.

Suppose we have the following classes:

class Person {
 private:
 int id;

 protected:
 int marks;

 public:
 string name;
};
class Student: private Person {...};

int main() {...}

Here,

 id is private in Person itself, so it cannot be accessed by Student and main()
 marks is inherited as private, so it can be accessed by Student but not by main()
 name is inherited as private, so it can be accessed by Student but not by main()

Let's look at this with an example.

Example: C++ Private Inheritance

#include <iostream>
using namespace std;
class Person {
private:
int id;
protected:
int marks;
public:
string name;
// setter function for private variable
void set_id(int num) {
id = num;
}
// getter function for private variable
int get_id() {
return id;
}
// setter function for protected variable
void set_marks(int num) {
marks = num;
}
// getter function for protected variable
int get_marks() {
return marks;
}
};
class Student: private Person {};
int main() {
Student student;
// Error: name is inherited as private
student.name = "Tom Araya";
// Error: set_marks() is inherited as private
student.set_marks(97);
// Error: set_id() is inherited as private
student.set_id(101);
// print Student information
cout << "Name: " << student.name << endl;
// Error: get_id() and get_marks() are inherited as private
cout << "Id: " << student.get_id() << endl;
cout << "Marks: " << student.get_marks();
return 0;
}

Just like in protected inheritance, we are unable to access the name and marks variables and the
getter and setter functions using the student object, even though they have been declared
as public or protected in the parent class.

This is because they are inherited as private by the Student class. So, we can't use
a Student object to access them in main().

This is shown by the accessibility table below:

Accessibility
Private
members

Protected
members

Public
members

Base Class Yes Yes Yes

Derived
Class

No
Yes (inherited as
private variables)

Yes (inherited as
private
variables)

Once again, we need to create public getter and setter functions inside the child class Student to
access the name and marks variables of the parent class Person.

And like in Protected Inheritance, we won't be accessing the private variable id.

We will, however, tell you the steps necessary to access it towards the end of this lesson. But
you'll have to write the code yourself :)

Revision
Before we dive into the next lesson, let's first revise the key concepts we learned in this lesson.

1. Inheritance Access Control in C++

In C++, we can derive classes in 3 modes:

 Public Inheritance
 Protected Inheritance
 Private Inheritance

2. Properties of the Different Inheritance Modes

The following code specifies how members of the base class are inherited in the derived classes:

class Parent {
 public:
 int x;
 protected:
 int y;
 private:
 int z;
};

// public inheritance
class Public_Child: public Parent {
 // x is public
 // y is protected
 // z is not accessible from Public_Child
};

// protected inheritance
class Protected_Child: protected Parent {
 // x is protected
 // y is protected
 // z is not accessible from Protected_Child
};

// private inheritance
class Private_Child: private Base {
 // x is private
 // y is private

 // z is not accessible from Private_Child
};

3. Access Members of the Base Class (Public Inheritance)

 private members - create public getter and setter functions in the base class to access
 protected members - create public getter and setter functions in either the base class or the

derived class
 public members - can be accessed from outside the class

4. Access Members of the Base Class (Protected and Private Inheritance)

 protected and public members - create public getter and setter functions in the derived class
 private members - can't be accessed directly from the derived class

Self-Study: Access Private Members (Optional)
If you have a parent class Person with a private variable id, how can you access the variable using
an object of the child class Student using private or protected inheritance?

One answer lies in the procedure outlined below:

1. Inside the Person Class

 Create getter and setter functions get_id() and set_id().

2. Inside the Student Class

1. Create an object of the Person class named person.
2. Create a function set_student_id() that accepts an integer parameter num.
3. Inside this function, call set_id() using the person object and pass num as an argument to it.
4. Create another function get_student_id().
5. Inside this function, use the code return person.get_id(); to return the required value.

3. Inside the main() Function

 Use set_student_id() and get_student_id() to access the private variable using
a Student object.

This concludes our lesson on Inheritance Access Control. Next, we will look at some additional
topics in OOP and Pointers.

Additional Topics
Functions and Objects

Introduction
Let's first revise the working of functions and objects.

1. Revise Function

#include <iostream>

using namespace std;

// function that adds two integers and returns the result

int add_numbers(int number1, int number2) {

int sum = number1 + number2;

return sum;

}

int main() {

// call the function

int sum = add_numbers(42, 18);

cout << "Sum = " << sum;

return 0;

}

// Output: Sum = 60

2. Revise Objects

#include <iostream>

using namespace std;

// create a class

class Addition {

public:

int add_numbers(int number1, int number2) {

int sum = number1 + number2;

return sum;

}

};

int main() {

// create an object of Addition

Addition addition;

// access the function using an object

int sum = addition.add_numbers(42, 18);

cout << "Sum = " << sum;

return 0;

}

// Output: Sum = 60

Functions and Objects

In C++, we can also use functions and objects together i.e. we can

 pass objects as arguments to a function
 return an object from the function.

Pass Objects to Function
Suppose we have a class named Student.

class Student {
 ...
};

Now, we can pass an object of this class to a function.

// function that takes a Student object as argument
void display(Student obj_arg) {
 ...
}

Here, you can see we have included the Student object obj_arg as the parameter to
the display() function.

Now, to call this function, we can create an object of Student and pass it during the function call.

// create an object ot Student
Student obj;

// call the function by passing the object as argument
display(obj);

Here, we have passed the obj object of the Student class to the display() function.

Next, let's look at a working example of this.

Example: Pass Object to Function

#include <iostream>
using namespace std;
class Student {
public:
double marks;
// constructor to initialize marks
Student(double m) : marks(m) {}
};
// function that accepts an object as argument
void display_marks(Student obj) {
cout << "Marks = " << obj.marks;
}
int main() {
// create Student object
Student student(88.5);
// call the function
display_marks(student);
return 0;
}
// Output: Marks = 88.5

In the above example, we have created a function named display_marks().

void display_marks(Student obj) {
cout << "Marks = " obj.marks;
}

Here, the function takes an object of the Student class as a parameter and prints the marks using
the object.

Even though the function is declared outside of the Student class, we are able to access
the marks variable from this function.

We can do this because we have passed the object of the Student class while calling the function.

// create Student object
Student student(88.5);
// call function
display_marks(student);

Return Object From a Function
Similarly, we can also return an object from a function. All we have to do is use the class name as
the return type. For example,

Student add_numbers () {
// function body
return obj;
}

Here, the add_numbers() function will return an object of the Student class. Let's see a complete
example of this.

#include <iostream>
using namespace std;
class Student {
public:
double marks1, marks2;
};
// function that returns object of Student
Student initialize_object() {
// create Student object
Student student;
// initialize marks1 and marks2
student.marks1 = 96.5;
student.marks2 = 75.0;
// return the object
return student;
}
int main() {
Student obj;
// call function and assign
// the return value to obj
obj = initialize_object();
// print member variables of obj
cout << "Marks 1 = " << obj.marks1 << endl;
cout << "Marks 2 = " << obj.marks2;
return 0;
}

Output

Marks 1 = 96.5
Marks 2 = 75

In this program, we have created a function initialize_object() that returns an object
of Student class.

Student initialize_object() {
...
}

Inside the function, we have

 created the Student object named student
 initialized marks1 and marks2 variables using the object
 returned the object

We have then called initialize_object() from the main() function.

// call function
obj = initialize_object();
cout << "Marks 1 = " << obj.marks1 << endl;
cout << "Marks 2 = " << obj.marks2;

Here, we have stored the returned object in the obj object and accessed
the marks1 and marks2 values associated with the object.

Figure: Return Object From Function

Example: Add Complex Numbers
In this example, we will add two complex numbers using functions and objects. A complex number
has the format

// format of complex numbers

8 + 2.4i

6 + 4.2i

Here, 8 and 6 are real parts and 2.4 and 4.2 are imaginary parts.

While performing addition of two complex numbers, we add real and imaginary parts separately.
Hence, the sum of above mentioned numbers will be 14 + 6.6i.

Source Code
#include <iostream>

using namespace std;

class Complex {

public:

// variables to store real and imaginary part

double real, imag;

// constructor to initialize real and imag

Complex(double r, double i) : real(r), imag(i) {}

};

// function to add complex numbers

// takes two Complex objects as arguments

// returns a Complex object that contains the sum

Complex add_complex(Complex c1, Complex c2) {

// create a new object of Complex

// initial real and imag values are set to 0

Complex result(0, 0);

// add real parts of complex numbers

result.real = c1.real + c2.real;

// add imaginary parts of complex numbers

result.imag = c1.imag + c2.imag;

// return the result

return result;

}

// function to print complex numbers

// takes an object of Complex as the parameter

void print_complex(Complex c1) {

cout << c1.real << " + " << c1.imag << "i" << endl;

}

int main() {

// create objects for two complex numbers

// with real and imaginary values

Complex c1(8, 2.4);

Complex c2(6, 4.2);

// object to store the addition

// initial real and imag values are set to 0

Complex sum(0, 0);

// print complex numbers

cout << "First Complex Number: ";

print_complex(c1);

cout << "Second Complex Number: ";

print_complex(c2);

// call the add_complex() function

sum = add_complex(c1, c2);

// print the resulting complex

cout << "Resulting Complex Number: ";

print_complex(sum);

return 0;

}

Output

First Complex Number: 8 + 2.4i

Second Complex Number: 6 + 4.2i
Resulting Complex Number: 14 + 6.6i

In the above example, we have created a class named Complex with
two double variables: real and imag. We have also created a constructor to initialize these
variables.

Notice the function,

Complex add_complex(Complex c1, Complex c2) {

// create a new object of Complex

// initial real and imag values are set to 0

Complex result(0, 0);

// add real parts of complex numbers

result.real = c1.real + c2.real;

// add imaginary parts of complex numbers

result.imag = c1.imag + c2.imag;

// return the result

return result;

}

Here, the function takes two objects (c1 and c2) as parameters and returns an object of
the Complex class. Inside the function, we have

 created an object result with initial values for real and imag as 0
 performed addition between the real parts of c1 and c2 objects and assigned the sum

to real of result
 performed addition between the imag part of c1 and c2 objects and assigned the sum

to imag of result

Important! We highly recommend you try this code again and again. If you can solve this problem without
referring to the program we've written above, you will have a better understanding of how to use functions
and objects together.

Friend Function and Friend Class

Introduction
In previous lessons, we have learned that private and protected class members declared cannot
be accessed from outside of the class.

#include <iostream>
using namespace std;
class Rectangle {
private:
int length, breadth;
public:
// constructor to initialize variables
Rectangle() : length(8), breadth(6) {}
};
int find_area(Rectangle obj) {
// error
int area = obj.length * obj.breadth;
return area;
}
int main() {
Rectangle obj;
// call find_area() by
// passing the object of Rectangle
cout << "Area = " << find_area(obj);
return 0;
}

When we run this code, we will get an error because we are trying to access
the private variables length and breadth of the Rectangle class from the find_area() function.

error: 'int Rectangle::length' is private within this context
 15 | int area = obj.length * obj.breadth;

Now, the only way we have accessed private members so far is through getter and setter
functions (and sometimes with constructors).

However, there is another way to access private members, known as friend functions and friend
classes.

Friend functions and classes are exceptional cases using which we can access all class members
from outside of the class, including private and protected members.

Figure: Friend Function and Classes

Let's start with the friend function first.

C++ Friend Function
As mentioned before, a friend function can access the private and protected members
of a class. We use the friend keyword to declare a friend function. For example,

class Rectangle {
...
// friend function declaration
friend int find_area(Rectangle);
...
};

In the above code, we have declared a friend function find_area() inside
the Rectangle class so that it can access all of the class members.

Let's explore further with an example.

#include <iostream>
using namespace std;
class Rectangle {
private:
int length, breadth;

public:
// constructor to initialize variables
Rectangle() : length(8), breadth(6) {}
// friend function declaration
friend int find_area(Rectangle);
};
// friend function definition
int find_area(Rectangle obj) {
// access private members
// from the friend function
int area = obj.length * obj.breadth;
return area;
}
int main() {
Rectangle obj;
// call find_area() by
// passing the object of Rectangle
cout << "Area = " << find_area(obj);
return 0;
}
// Output: Area = 48

In the above example, we have created the Rectangle class. It consists of two private
members: length and breadth.

Notice that we have declared a friend function inside the Rectangle class and its
definition is outside the class.

class Rectangle {
...
// friend function declaration
friend int find_area(Rectangle);
};
// friend function definition
int find_area(Rectangle obj) {
...
}

The function accepts an object of the Rectangle class as its parameter.

As you can see, we are able to access the private variables: length and breadth from
the outer function (find_area()). It's possible because the outer function find_area() is
declared as a friend function.

C++ Friend Class
Similar to friend functions, we can also create friend classes. A friend class can access
the member variables and member functions of the class it is declared in. For example,

#include <iostream>
using namespace std;
class Animal {
private:

int legs_count;
public:
// constructor to initialize variable
Animal() : legs_count(4) {}
// declare friend class
friend class Dog;
};
// define friend class
class Dog {
public:
void count_legs() {
// create Animal object
Animal animal;
// access private variable of Animal class
cout << "Legs = " << animal.legs_count;
}
};
int main() {
// create object of friend class
Dog dog;
dog.count_legs();
return 0;
}
// Output: Legs = 4

Here, the class Dog is a friend class of class Animal.

// inside Animal class
// declare friend class
friend class Dog;

That's why we are able to access the private variable legs_count from the Dog class.

// inside Dog class
void leg_count() {
Animal animal;
cout << "Legs = " << animal.legs_count;
}

Dynamic Memory Allocation

Why Dynamic Memory Allocation?
Before we learn about dynamic memory allocation, let's first look at some limitations of an array.

int marks[10];

Here, the size of the array is 10, which is fixed and cannot be changed.

Creating an array of fixed size can lead to two issues:

 If we only need to store the marks of, say, 3 students, then we have wasted memory.
 If we need to store the marks of more than 10 students, we cannot do that.

To solve this issue, the concept of dynamic memory allocation was introduced in C++
programming.

Dynamic memory allocation allows us to allocate memory after we run our program (during run-
time).

Now that we know why we need dynamic memory allocation, let's learn about it in further detail.

Dynamic Memory Allocation

Revision: Pointer

Let's first revise the concept of pointers with the help of this example.

#include <iostream>

using namespace std;

int main() {

// create a variable

int number = 36;

// create a pointer variable and

// assign the address of number to it

int* ptr = &number;

// print value of number using ptr

cout << *ptr; // 36

return 0;

}

Here,

 &number - memory address of number
 int* ptr - pointer variable
 *ptr - gives the value pointed by the ptr pointer

Now, let's get back to dynamic memory allocation.

Dynamic Memory Allocation

In C++ dynamic memory allocation, we use the following operators alongside a pointer:

 new - dynamically allocates memory during run-time
 delete - clears the dynamically allocated memory after it is of no use to us

Now, let's learn about these operators in greater detail.

C++ new and delete
We use the new operator to dynamically allocate memory in C++. Let's start by dynamically allocate
memory to an integer variable:

int* ptr = new int;

Here, we have dynamically allocated memory to an int variable.

To dynamically allocate memory for a double variable, we use the following code:

double* ptr = new double;

Now, if we print the pointer ptr, we will get the memory address as output.

cout << ptr; // 0x56425d6e7eb0

This is because the new operator returns the address of the newly allocated memory location.

Assign Value to Dynamically Allocated Memory

Since we use pointers for dynamic memory allocation, we use the dereference operator * to
assign value to the allocated memory:

int* ptr = new int;
*ptr = 5;

Here, *ptr = 5; assigns the integer value 5 to the dynamically allocated memory.

Next, we will learn to deallocate the newly allocated memory.

C++ delete Operator

We use the delete operator to dynamically deallocate a memory. For example,

// allocate memory
int* ptr = new int;

// deallocate memory
delete ptr;

This is important because we need to free the dynamically allocated memory once it is used.

Example: Dynamic Memory Allocation
Let's look at a simple program that dynamically allocates (and then deallocates)
memory to a single integer variable.

#include <iostream>
using namespace std;
int main() {
// dynamically allocate memory
int* number = new int;
// assign value to the memory
*number = 256;
cout << *number;
// deallocate the memory
delete number;
return 0;
}
// Output: 256

In this program, we have used the new keyword to dynamically allocate memory to
an int variable.

int* number = new int;

After assigning a value to the variable and printing it on the screen, we finally
deallocated the memory using delete.

delete number;

Dynamic Memory Allocation: Array
Before we implement dynamic memory allocation for arrays, let's revise the concept of
pointers and arrays with the help of this example.

#include <iostream>
using namespace std;
int main() {
// integer array
int numbers[] = {1, 2, 3};
// print array elements
for (int i = 0; i < 3; ++i) {
cout << *(numbers + i) << " ";
}
return 0;
}
// Output: 1 2 3

Here, *(numbers + i) returns the ith element of the array.

Now, let's create a program that stores the marks of n students where the value of n will
be provided dynamically during run time.

#include <iostream>
using namespace std;
int main() {
int n;
cout << "Enter the number of students: ";
cin >> n;
// create pointer variable and dynamically allocate
// n number of memory locations to it
int* marks = new int[n];
cout << "Enter marks:";
for (int i = 0; i < n; ++i) {
// store value at the allocated memory using marks pointer
cin >> *(marks + i);
}
cout << "Marks: ";
for (int i = 0; i < n; ++i) {
cout << *(marks + i) << endl;
}
// free the allocated memory
delete[] marks;
return 0;
}

Output

Enter the number of students: 3

Enter marks:25

68

72

Marks: 25

68
72

Notice how we have allocated and deallocated the memories for the array:

// allocate memory to array of size n
int* marks = new int[n];
// deallocate the memory in the array
delete[] marks;

Remember, when we allocate memory for the array, we need to specify the array size
at the end using the [] symbol.

Similarly, we need to use [] with the delete operator to deallocate the array memory.

Reallocate Memory
Sometimes, the dynamically allocated memory is insufficient or more than required.

Unfortunately, C++ does not provide any standard function to reallocate memory. Instead, we can
tackle this problem by following the given steps:

1. First, allocate new memory using a different pointer.
2. Then, copy the contents of the original dynamic array to the new array.
3. Deallocate the memory assigned to the original array.
4. Finally, use the new dynamic array after that point.

Let us look at this with an example.

Example: Reallocate Memory
Let's suppose we dynamically created an array of size 4. And we have to append one more
element to the array. Let's see an example of how we can do that.

#include <iostream>
using namespace std;
int main() {
// dynamically create an array of size 4
int* array1 = new int[4];
cout << "Enter Array Elements: ";
// get input value for array1
for (int i = 0; i < 4; ++i) {
cin >> *(array1 + i);
}
cout << "Array Elements: ";

// print array elements
for (int i = 0; i < 4; ++i) {
cout << *(array1 + i) << ", ";
}
// create new pointer of size 5
int* array2 = new int[5];
// copy array1 to array2
for (int i = 0; i < 4; ++i) {
// assign ith element of array1
// to ith element of array2
*(array2 + i) = *(array1 + i);
}
// deallocate array1
delete[] array1;
// add 20 as the last element of array2
array2[4] = 20;
// print all elements of array2
cout << "\nNew Array Elements: ";
for (int i = 0; i < 5; ++i) {
cout << *(array2 + i) << ", ";
}
// deallocate array2
delete[] array2;
return 0;
}

Output

Enter Array Elements: 16

17

18

19

Array Elements: 16, 17, 18, 19,
New Array Elements: 16, 17, 18, 19, 20,

Here's how this program works:

1. Create initial array and get user input

First, we have dynamically created the array1 array and took user inputs for it.

int* array1 = new int[4];
for (int i = 0; i < 4; ++i) {
cin >> *(array1 + i);
}

Figure: Elements of the Initial Dynamic Array

2. Create replacement array and copy original elements to it

Then, we created array2 and copied the elements of array1 to it.

int* array2 = new int[5];
for (int i = 0; i < 4; ++i) {
*(array2 + i) = *(array1 + i);
}

Figure: Copying Elements of One Array to Another

3. Deallocate the original array and add 20 to the new array

After that, we deallocated the memory allocated to array1 and added the integer 20 as
the 5th element of the array.

delete[] array1;
array2[4] = 20;

Figure: Adding Integer 20 to Index 4 of array2

4. Print the new array and deallocate the memory

Finally, we printed the new array and deallocated the memory using delete[].

Dynamic Object Creation
We can also use the new keyword to dynamically create an object in C++. For example,

#include <iostream>
using namespace std;
class Student {
public:
string name;
};
int main() {
// dynamically create Student object
Student* ptr = new Student();
// initialize and print class variable
ptr->name = "Peter Parker";
cout << "Name = " << ptr->name;
// ptr memory is released
delete ptr;
return 0;
}
// Output: Name = Peter Parker

In the above example, we have used the new keyword to create an object of the Student class.

// dynamically declare Student object
Student* ptr = new Student();

Here, ptr is a pointer variable of Student type.

We have then used the pointer to initialize and print the class variable.

// initialize and print class variable
ptr->name = "Peter Parker";
cout << "Name = " << ptr->name;

Remember that the arrow operator -> is used to access class members using pointers.

Finally, we use the delete ptr; code to dynamically remove the object from the computer memory.

Example: C++ Dynamic Object Creation
In this example, we will dynamically create an object to calculate the area and
circumference of a circle.

#include <iostream>
using namespace std;
class Circle {
private:
double radius;
double pi = 3.14;
public:
// constructor to initialize radius
Circle(double rad) : radius(rad) {}
// function to calculate area of the circle
double calculate_area() {
return pi * radius * radius;
}
// function to calculate circumference of the circle
double calculate_circumference() {
return 2 * pi * radius;
}
};
int main() {
// get user input for radius
double radius;
cout << "Enter radius of circle: ";
cin >> radius;
// dynamically create Circle object
// pass radius as argument to constructor
Circle* circle = new Circle(radius);
// get the area of circle
double area = circle->calculate_area();
// get the circumference of circle
double circumference = circle->calculate_circumference();
// print area and circumference
cout << "Circle Area: " << area << endl;
cout << "Circle Circumference: " << circumference;
// free the computer memory
delete circle;
return 0;
}

Output

Enter radius of circle: 2.5

Circle Area: 19.625
Circle Circumference: 15.7

Notice the following code in the program above.

// dynamically create Circle object
// pass radius as argument to constructor
Circle* circle = new Circle(radius);

Here, we have passed the variable radius as argument to the constructor of the object.

Figure: Pass argument to constructor when creating an object dynamically

Next, we will pass literals as argument to the constructor.

Pass Literal as an Argument

#include <iostream>
using namespace std;
class Circle {
private:
double radius;
double pi = 3.14;
public:
// constructor to initialize radius
Circle(double rad): radius(rad) {}

// function to calculate area of the circle
double calculate_area() {
return pi * radius * radius;
}
// function to calculate circumference of the circle
double calculate_circumference() {
return 2 * pi * radius;
}
};
int main() {
// dynamically create Circle object
// pass 3.6 as argument to constructor
Circle* circle = new Circle(3.6);
// print radius, area and circumference
cout << "Circle Radius: 3.6" << endl;
cout << "Circle Area: " << circle->calculate_area() << endl;
cout << "Circle Circumference: " << circle->calculate_circumference();
// free the computer memory
delete circle;
return 0;
}

Output

Circle Radius: 3.6

Circle Area: 40.6944
Circle Circumference: 22.608

In the above program, notice the following code.

Circle* circle = new Circle(3.6);

Here, we have passed the literal 3.6 as an argument to the constructor of the object.

With this, we've completed the section on dynamic memory allocation. Let's now learn
about some important types of pointers in C++.

But first, do complete the final challenge of this lesson :)

Pointer Types

Introduction
So far, we have learned about the many ways pointers can be used in C++. In this section, we will
look at some special types of pointers. They are

 this pointer
 void pointers
 dangling pointers

Let's start with 'this' pointer.

Introduction to 'this' Pointer
In C++, we use the this keyword to refer to the current object. Let's see what that means.

#include <iostream>
using namespace std;
// define the Student class
class Student {
public:
// public string variable to hold the student's name
string name;
// function that displays the student's name
void display_name() {
cout << "Student's name using this: " << this->name << endl;
}
};
int main() {
// create a Student object and set the name variable
Student student;
student.name = "John Doe";
// call the display_name() function
student.display_name();
// print the student's name
cout << "Student's name using object: " << student.name;
return 0;
}

Output

Student's name using this: John Doe
Student's name using object: John Doe

In the above example, you can see both student.name and this->name give the same result, John
Doe.

Basically, what happens here is when we call the display_name() function using
the student object, this will refer to the current object, which is student.

void display_name() {
cout << "Student's name using this: " << this->name << endl;
}

Hence, we get the output John Doe (value of name for student).

Similarly, if we call the function with another object (let's say student2), this->name will print the
value of name for student2. For example,

#include <iostream>
using namespace std;
// define the Student class
class Student {
public:
// public string variable to hold the student's name
string name;

// function that displays the student's name
void display_name() {
cout << "Student's name using this: " << this->name << endl;
}
};
int main() {
// create a Student object and set the name variable
Student student;
student.name = "John Doe";
// call the display_name() function
student.display_name();
// create a Student object and set the name variable
Student student2;
student2.name = "Lily Doe";
// call the display_name() function
student2.display_name();
return 0;
}

Output

Student's name using this: John Doe
Student's name using this: Lily Doe

Here, for the function call

 student.display_name() - this refers to the student object
 student2.display_name() - this refers to the student2 object

C++ this in Constructor
In C++, we often use the this keyword to initialize member variables inside a constructor. For
example,

#include <iostream>
using namespace std;
// define the Student class
class Student {
public:
// public string variable to hold the student's name
string name;
// public int variable to hold the student's score
int score;
// constructor that initializes the student's name and score
Student(string name, int score) {
this->name = name;
this->score = score;
}
};
int main() {
// create two Student objects and set their name and score variables
Student student1("John Doe", 80);
Student student2("Jane Doe", 90);
// print the student1 names and scores

cout << "First student: " << endl;
cout << "Name: " << student1.name << endl;
cout << "Score: " << student1.score << endl << endl;
// print the student1 names and scores
cout << "Second student: " << endl;
cout << "Name: " << student2.name << endl;
cout << "Score: " << student2.score << endl;
return 0;
}

Output

First student:

Name: John Doe

Score: 80

Second student:

Name: Jane Doe
Score: 90

In the above example, we have used a constructor to assign the values of
variables name and score.

Student(string name, int score) {
this->name = name;
this->score = score;
}

Notice that the constructor parameters have the same name as the member variables.

Hence, we have used the this pointer to point to the member variables, while the variables without
the this pointer refer to the constructor parameters.

Since we know that this refers to the current object, here's what happens when creating the
objects:

Student student1("John Doe", 80);

 this will refer to student1
 arguments: John Doe and 80 will be assigned to student1.name and student1.score

Student student2("Jane Doe", 90);

 this refers to student2
 arguments: Jane Doe and 90 will be assigned to student2.name and student2.score

More on 'this' Pointer
In the last example, we created a constructor with the same parameter names as the member
variables. Then we referred to the member variables using the this pointer.

We could have also used different variables in the parameter name. In this section, we will learn
why using the this pointer in the constructor is important.

class Rectangle {
 public:

 // member variables
 double length;
 double breadth;

 // constructor to initialize variables
 Rectangle(double len, double brth) {
 length = len;
 breadth = brth;
 }
};

Here, len and brth are the parameters of the Rectangle() constructor, and they are used to initialize
the length and breadth member variables, respectively.

The variable names len and brth are not informative. Remember, variable names in any
programming language should be as clear and informative as possible.

So, it is preferable to name our constructor parameters as length and breadth. However, this will
create a lot of confusion. For example,

// error code
Rectangle(double length, double breadth) {
 length = length;
 breadth = breadth;
}

As you can see from the code above, both the member variables and the constructor parameters
share the same variable names.

Obviously, this creates a lot of confusion, i.e., we can't tell which is the member variable and which
is the constructor parameter.

The C++ compiler will also suffer from the same confusion. So when we run the code, it will not
initialize the member variables. Instead, we get unexpected output.

We can solve this problem by using the this pointer.

// use this pointer inside constructor
Rectangle(double length, double breadth) {
 this->length = length;
 this->breadth = breadth;
}

Here,

 this->length and this->breadth indicate the member variables
 length and breadth are the constructor parameters

Example: C++ this Pointer

Let us look at the following example to make the concept of this pointer clear.

#include <iostream>
using namespace std;
class Rectangle {
private:
// member variables
double length;
double breadth;
public:
// constructor to initialize variables
Rectangle(double length, double breadth) {
// this->length and this->breadth are member variables
this->length = length;
this->breadth = breadth;
}
// function to calculate the area of the rectangle
double calculate_area() {
return this->length * this->breadth;
}
};
int main() {
// create Rectangle objects
Rectangle rectangle1(25.5, 16.8);
Rectangle rectangle2(12.0, 8.0);
// call the calculate_area() function of rectangle1
double area1 = rectangle1.calculate_area();
cout << "Rectangle 1 Area = " << area1 << endl;
// call the calculate_area() function of rectangle2
double area2 = rectangle2.calculate_area();
cout << "Rectangle 2 Area = " << area2;
return 0;
}

Output

Rectangle 1 Area = 428.4
Rectangle 2 Area = 96

In this program, we have used the this pointer inside the constructor to initialize the member
variables, since the constructor parameters and the member variables share the same names.

Rectangle(double length, double breadth) {
this->length = length;
this->breadth = breadth;
}

We have also used the this pointer inside the calculate_area() function.

double calculate_area() {
return this->length * this->breadth;
}

However, it's not necessary to use the this pointer inside this function because there are no
function parameters or function variables with conflicting names. But there is no harm in
using this either.

Common Mistakes With this Pointer (I)
1. Not Using this Pointer When it is Required

We've already stated that the C++ compiler will get confused if the function/constructor parameters
have the same names as the member variables.

As a result, we get unexpected output. Let's see this with an example.

#include <iostream>
using namespace std;
class Person {
public:
string name;
// invalid code
Person(string name) {
name = name;
}
};
int main() {
Person person("M. Bison");
// print name of person
cout << "Hello, " << person.name;
return 0;
}
// Output: Hello,

In the above program, our expected output is Hello, M. Bison. But we only get Hello, instead. This
is because our constructor failed to initialize the name variable.

2. Using Dot Operator Instead of Arrow Operator

In C++, the this keyword is used with the arrow operator ->, not the dot operator (.). It is only in
languages like Java that this is used with the dot operator. For example,

#include <iostream>
using namespace std;
class Person {
public:
string name;
// error: use -> instead of .
Person(string name) {
this.name = name;
}
};
int main() {
Person person("M. Bison");
cout << "Hello, " << person.name;
return 0;
}

// Output:
// error: request for member 'name' in '(Person*)this', which is of pointer type 'Person*' (maybe you
meant to use '->' ?)

To access class members,

 we use the dot operator . with objects
 the arrow operator -> with pointers

Since this is a pointer, we must use the -> operator.

Common Mistakes With this Pointer (II)
3. Using this Pointer in Constructor Initializer Lists

Using this to access member variables in constructor initializer lists will cause an error.

This is because the initialization list already makes the member variables and the constructor
parameters unambiguous.

So, there is no need to remove the ambiguity through the use of this pointer.

#include <iostream>
using namespace std;
class Person {
public:
string name;
// error: use of this pointer in constructor initializer list
Person(string name): this->name(name) {}
};
int main() {
Person person("Terry Bogard");
// print name of person
cout << "Hello, " << person.name;
return 0;
}
// Output:
// error: expected identifier before 'this'

We can fix this error by removing the this keyword from the constructor.

Person(string name): name(name) {}

Now that we've covered the basics of this pointer, it's time to shift our attention to void pointers.

But before that, let's solve a coding challenge to test what you've just learned in this section!

C++ Void Pointers
If we don't know the data type of a variable that the pointer points to, it is known as
a void pointer. It is also known as pointer to void.

It is a generic pointer that is declared using the void keyword. For example,

void *ptr;

Here, ptr is a void pointer. Let us see how we can use this type of pointer:

int *ptr;
double number = 9.0;

ptr = &number; // Error

Here, ptr is a pointer of int type and number is a double type variable.

Since the code ptr = &number tries to assign the address of the double type variable
to int type, we will get an error.

In this case, we can use pointer to void or void pointer.

void *ptr;
double number = 9.0;
ptr = &number; // valid

Example: Void Pointer
Let us see an example of a void pointer.

#include <iostream>
using namespace std;
int main() {
// create void pointer
void* ptr;
double number = 2.3;
// assign double address to void
ptr = &number;
cout << "Address of number: " << &number << endl;
cout << "Address pointed to by ptr: " << ptr;
return 0;
}

Output

Address of number: 0x7ffd0d6cffc8
Address pointed to by ptr: 0x7ffd0d6cffc8

In the above example, we have assigned the address of variable number to a void pointer ptr.

When we print the address of number and the value of ptr, we get the same output.

Dereferencing a Void Pointer (I)
Let's look at the program we have previously written.

#include <iostream>
using namespace std;
int main() {
// create void pointer
void* ptr;
double number = 2.3;
// assign double address to void
ptr = &number;
cout << "Address of number: " << &number << endl;
cout << "Address pointed to by ptr: " << ptr;
return 0;
}

Here, the void pointer ptr points to a double variable number. We have then used ptr to print the
address stored inside of it.

But what if we want to print the value stored in the address that ptr points to, i.e., to print the value
of the number variable using ptr?

Normally, we'd dereference the pointer to print the value. But this doesn't work for a void pointer.
For example,

#include <iostream>
using namespace std;
int main() {
// create void pointer
void* ptr;
double number = 2.3;
// assign double address to void
ptr = &number;
// dereference the void pointer
cout << *ptr;
return 0;
}

Output

error: 'void*' is not a pointer-to-object type

 15 | cout << *ptr;
 | ^~~

Here, we get this error message because we haven't converted the void pointer to a concrete data
type.

To dereference a void pointer, we first need to cast the void pointer to point to the specific type of
data that we want to access.

For example, if the void pointer is pointing to an int value, we must cast the void pointer to point to
an int data type. This can be done with the help of type casting.

Next, we will see how we can properly deference the void pointer.

Dereferencing a Void Pointer (II)
The syntax to type cast a void pointer is:

(data_type)pointer_variable

So, we write the following code to dereference the void pointer ptr that points to the address of
a double variable.

(double)ptr

Let's see apply this code inside a program.

#include <iostream>
using namespace std;
int main() {
// create void pointer
void* ptr;
double number = 2.3;
// assign double address to void
ptr = &number;
// dereference ptr by type casting
// print the value stored in the address pointed to by ptr
cout << "Value in the address pointed to by ptr: " << *(double*)ptr;
return 0;
}

Output

Value in the address pointed to by ptr: 2.3

Here, we have printed the value of the number variable by dereferencing ptr.

cout << "Value in the address pointed to by ptr: " << *(double*)ptr;

Important! It is better to use static_cast for type casting and dereferencing void pointers. We will
learn about this type of casting in our Learn C++ Beyond Basics course.

For now, just remember this syntax for dereferencing void pointers using static_cast.

// syntax for dereferencing void pointer
static_cast<data_type>(pointer_variable)
// code to dereference ptr in the above program
static_cast<double>(ptr)

Change Value of a Variable Using Void Pointers
In this example, we will use a void pointer to change value of a variable.

#include <iostream>
using namespace std;
int main() {
// create integer and character variables
int number = 911;
// create void pointer
// assign address of number to ptr
void* ptr = &number;
// print initial value of number
cout << "Initial value: " << *(int*)ptr << endl;
// increase the value of number by 88
(int)ptr = *(int*)ptr + 88;
cout << "Final value: " << *(int*)ptr;
return 0;
}

Output

Initial value: 911
Final value: 999

Here, we have increased the value of the number variable by 88.

// number = number + 88;
(int)ptr = *(int*)ptr + 88;

Next, we will use static_cast to perform this task.

Change Value Of A Variable Using Static Cast
Let's see how we can use static_cast to change value of a variable.

#include <iostream>
using namespace std;
int main() {
int number = 911;
void* ptr = &number;
// use static_cast for dereferencing
cout << "Initial value: " << *static_cast<int*>(ptr) << endl;
// increase the value of number by 88
static_cast<int>(ptr) = *static_cast<int*>(ptr) + 88;
cout << "Final value: " << *static_cast<int*>(ptr);
return 0;
}

Alternatively, you can also use the following codes to change the value of number using ptr.

// each line of code below are equivalent to
// number = number + 88;
// Alternative 1
(int)ptr = number + 88;
// Alternative 2
number = *(int*)ptr + 88;
// Alternative 3
static_cast<int>(ptr) = number + 88;
// Alternative 4
number = *static_cast<int*>(ptr) + 88;

Assign Value of a Void Pointer to Another Pointer
(I)
Let's look at the program we wrote in the last section.

#include <iostream>
using namespace std;
int main() {
int number = 911;
void* ptr = &number;
// use static_cast for dereferncing
cout << "Initial value: " << *static_cast<int*>(ptr) << endl;
// increase the value of number by 88
static_cast<int>(ptr) = *static_cast<int*>(ptr) + 88;
cout << "Final value: " << *static_cast<int*>(ptr);
return 0;
}

Here, we have used the void pointer ptr to change the value of number and print it.

But what if we want to assign the address in the void pointer ptr to an integer pointer ptr_int? We
can then simply dereference ptr_int to access the value of the number variable.

We can do this by writing the following code:

// assign address in void pointer to integer pointer
int* ptr_int = (int*)ptr;
// use static_cast for assignment
int* ptr_int = static_cast<int*>(ptr);

We can then simply dereference this integer pointer to access the value stored in the address.

// access the value stored in number
*ptr_int

Assign Value of a Void Pointer to Another Pointer
(II)

#include <iostream>
using namespace std;
int main() {
int number = 911;
void* ptr = &number;
// assign address stored in ptr to an int pointer
int* ptr_int = static_cast<int*>(ptr);
// print value of number by dereferencing ptr_int
cout << "Initial value: " << *ptr_int << endl;
// increase the value of number by 88
*ptr_int = *ptr_int + 88;
cout << "Final value: " << *ptr_int;
return 0;
}

Output

Initial value: 911
Final value: 999

Dangling Pointers
A dangling pointer is a pointer that is used to point to a non-existing memory location (deallocated
memory). For example,

int* ptr = new int;
cout << ptr;

// Output: 0x10319e0

Here, ptr is a pointer that points to the memory address 0x10319e0.

Suppose we deallocate the memory using the following code:

// deallocate memory
delete ptr;

Now, the memory no longer exists. However, if we print ptr, we still get the memory address.

// dangling pointer
cout << ptr;

// Output: 0x10319e0

In this case, ptr is now a dangling pointer.

Note: Dangling pointers can create a lot of problems in our program. So, it is best to avoid it.

Avoiding Dangling Pointers
We can avoid dangling pointers by setting the pointer value to NULL after deallocating the memory.
For example,

int* ptr = new int;

// deallocate memory
delete ptr;

// assign NULL to ptr
ptr = NULL;

cout << ptr; // gives 0

Here, after deallocating the pointer, we assign NULL to the pointer. Now the pointer doesn't point to
any memory address.

Hence, it doesn't become a dangling pointer.

Important! If you're using C++ 11 or above, it's better to use nullptr instead of NULL. This is
because nullptr was specifically introduced for pointers, while NULL actually represents an integer
value. This integer value can cause problems in some situations, which we won't discuss here.

